Abstract:
An apparatus includes an integrated circuit (IC). The IC includes a differencing comparator. The differencing comparator receives a differential input signal. The differencing comparator compares the differential input signal to a threshold value. The differencing comparator includes a transconductance circuit coupled to receive the differential input signal and to provide a differential output signal.
Abstract:
An apparatus includes a circuit that has a normal mode of operation and a low-power mode of operation. The circuit consumes more power in the normal mode of operation than in the low-power mode of operation. The apparatus further includes a power-supply circuit. The power-supply circuit provides a normal supply voltage to the circuit in the normal mode of operation. The power-supply circuit includes a non-linear circuit to provide a compressed supply voltage to the circuit in the low-power mode of operation, wherein the normal supply voltage is greater than the compressed supply voltage.
Abstract:
An apparatus includes an integrated circuit (IC). The IC includes a current source, to sink or source an output current, in response to a control signal, and a switch-capacitor resistor coupled to the current source. The apparatus further includes a controller coupled to derive the control signal from a voltage across the switch-capacitor resistor, the controller further to provide a switch control signal to the switch-capacitor resistor.
Abstract:
An integrated circuit (IC) includes a first circuit that is powered by a first supply voltage, and a second circuit that is powered by a second supply voltage. The second supply voltage has a lower level than the first supply voltage. The IC further includes a power management circuit. The power management circuit includes a switch-mode DC-DC regulator that is coupled to a plurality of pins of the IC in a pre-defined configuration. The power management circuit provides the first and second supply voltages to power up the IC in a default configuration without knowledge of the pre-defined configuration.
Abstract:
An apparatus includes a detector to detect an idle state of a communication link that communicates bursts or packets of information. The apparatus also includes an oscillator having low-power and normal modes of operation. The oscillator makes a transition to the low-power mode during the idle state of the communication link. The oscillator leaves the low-power mode of operation and enters the normal mode of operation when the communication link is in a non-idle state.
Abstract:
An apparatus includes analog or mixed-signal circuitry that operates in response to a first signal, and digital circuitry that operates in response to a second signal. The apparatus further includes a signal retiming circuit. The signal retiming circuit retimes an output signal of a digital signal source to reduce interference between the digital circuitry and the analog or mixed-signal circuitry by retiming edges of the output signal of the digital signal source to fall on cycle boundaries of the first signal.
Abstract:
An apparatus includes a multiplexed liquid crystal display (LCD) controller. The LCD controller is adapted to operate in at least first and second phases of operation. The LCD controller is adapted to drive a plurality of signal lines to a first set of voltages during the first phase of operation and to a second set of voltages during the second phase of operation. The LCD controller is further adapted to couple to a node at least some of the plurality of signal lines between the first and second phases of operation.
Abstract:
An apparatus includes a slew rate regulation circuit, a plurality of switches and a controller circuit. The controller circuit controls the plurality of switches to decouple a first source supply voltage from a supply rail; control the plurality of switches to couple a second source supply voltage to the supply rail to replace the first source supply voltage with the second source supply voltage; and control the slew rate regulation circuit to regulate a slew rate of a voltage of the supply rail during a time interval in which the first source supply voltage is being replaced with the second source supply voltage.
Abstract:
An apparatus includes a circuit that includes a communication circuit to communicate information via a link using two communication modes. In the first communication mode, the communication circuit communicates information using a communication protocol. In the second communication mode, the communication circuit communicates information without triggering communication using the communication protocol.
Abstract:
A system for communicating information includes one device that communicates information via a communication link. The system also includes a second device to communicate information via the communication link. The second device includes a receiver to receive information from the communication link. The second device also includes an oscillator that provides at least one timing signal to the receiver. The oscillator is disabled when the communication link is in an idle state. The oscillator is enabled when the communication link is in a non-idle state.