Abstract:
A semiconductor device may be provided. The semiconductor device may be configured to shift storage positions of data and error information on the data to store the data into shifted storage positions based on the address signals having a certain combination being inputted a predetermined number of times.
Abstract:
A test apparatus may include transceivers and a global de-skew circuit. In a training mode, the transceivers provide first timing information obtained by delaying a first data signal in the range of up to a preset unit interval based on a clock signal and receive second timing information corresponding to timing differences between a slowest transceiver and the remaining transceivers. In an operation mode, the transceivers provide compensation data to a plurality of DUTs (Devices Under Test) substantially simultaneously. The compensation data may be obtained by delaying a second data signal by multiples of the preset unit interval in response to the second timing information. In the training mode, the global de-skew circuit receives the first timing information, calculates, using the first timing information, the timing differences between the slowest transceiver and the remaining transceivers, and provides the second timing information corresponding to the timing differences to the transceivers.
Abstract:
A semiconductor system includes a host and a media controller. The host may generate first host parities from first host data based on an error check matrix. The media controller may include a first input/output (I/O) circuit and a second I/O circuit. The media controller may generate first media data and first media parities based on the first host data and the first host parities. The first I/O circuit may generate, based on the error check matrix, first internal data by correcting errors in the first host data using the first host parities. The second I/O circuit may generate the first media data and the first media parities from the first internal data.
Abstract:
A resistance variable memory apparatus may include a memory circuit configured to include a plurality of blocks, each including a plurality of memory cells. The resistance variable memory apparatus may include a disturbance preventing circuit configured to be driven based on a counting signal corresponding to the number of write access for each of the plurality of blocks, a write command, and an address signal and to allow scrubbing to be performed on a memory cell having a preset scrubbing condition when the counting signal satisfied with the scrubbing condition is output based on the scribing condition according to a physical position of the memory cell in the block.
Abstract:
In an embodiment of the present disclosure, a memory module may be provided. In an embodiment of the present disclosure, a system may be provided. In an embodiment of the present disclosure, an operation of a system and memory module may be provided. The memory module may include a plurality of ranks in which a defragmentation operation of a memory is performed based on entrance of a low-power operation mode, and a vacant region of the memory is powered off based on entrance of a self-refresh mode after the defragmentation operation is ended. The memory module may include a page table of which data are updated based on an ending of the defragmentation operation of the memory.
Abstract:
A latency control circuit includes a clock delay configured to output a plurality of serial delay signals obtained by serially delaying an input clock signal with the same intervals, a deviation information generating unit configured to generate a deviation information on the basis of a delay value, which the clock signal undergoes in a chip, and latency information, a clock selector configured to output a plurality of clock selection signals based on the plurality of serial delay signals and the deviation information, a command signal processing unit configured to generate a read signal based on an input command signal, and output a variable delay duplication signal by variably delaying the read signal, and a latency shifter configured to output a latency signal by combining the plurality of clock selection signals with the variable delay duplication signal.
Abstract:
A clock generation circuit includes a delay line, a delay modeling block, a phase detection block, a multi-update signal generation block, and a delay line. The delay line delays an input clock and generates a delayed clock. The delay modeling block delays the delayed clock by a modeled delay value and generates a feedback clock. The phase detection block compares phases of the input clock and the feedback clock and generates phase information, and quantizes a phase difference between the input clock and the feedback clock and generates phase codes. The multi-update signal generation block generates a multi-update signal in response to the phase codes. The delay line control block changes a delay amount of the delay line in response to the multi-update signal and the phase information.
Abstract:
A reset signal generation apparatus includes a reset signal generation unit and a reset signal expansion unit. The reset signal generation unit enables a reset signal and an enable signal in response to a reset input signal, and disables the reset signal in response to a pulse width extension signal. The reset signal expansion unit generates the pulse width extension signal that is enabled for a predetermined time, in response to the enable signal.