摘要:
An apparatus for manufacturing a Group III nitride semiconductor is composed of a pressure vessel, a reaction vessel disposed within the pressure vessel, a heating device disposed within the pressure vessel so as to heat the reaction vessel, and a glove box filled with argon gas. The pressure vessel and the glove box are connected to each other via a gate valve. By virtue of this configuration, a large-sized reusable reaction vessel can be disposed within the pressure vessel without causing oxidation of Na.
摘要:
The invention provides a group III nitride semiconductor manufacturing system which is free from interruption to rotation of a rotational shaft. The group III nitride semiconductor manufacturing system has a reacting vessel having an opening, a crucible disposed in an interior of the reaction vessel and containing a melt including at least a group III metal and an alkali metal, a holding unit supporting the crucible and having a rotational shaft extending from the interior of the reaction vessel to an exterior of the reaction vessel through the opening, a rotational shaft cover covering a part of the rotational shaft positioned at the exterior of the reacting vessel and connected to the reacting vessel at the opening, a rotational driving unit disposed at an outside of the reacting vessel and regulating the rotational shaft and a supply pipe connected to the rotational shaft cover and supplying a gas including at least nitrogen into a gap between the rotational shaft and the rotational shaft cover, wherein the gas and the melt react to grow a group III nitride semiconductor crystal.
摘要:
An apparatus for manufacturing a Group III nitride semiconductor is composed of a pressure vessel, a reaction vessel disposed within the pressure vessel, a heating device disposed within the pressure vessel so as to heat the reaction vessel, and a glove box filled with argon gas. The pressure vessel and the glove box are connected to each other via a gate valve. By virtue of this configuration, a large-sized reusable reaction vessel can be disposed within the pressure vessel without causing oxidation of Na.
摘要:
A Group III nitride semiconductor crystal is grown according to a flux method. After completion of the crystal-growing process, Na is discharged from a crucible by a recovery device when the temperature of the crucible is 100° C. or higher, and is held in a holding vessel in a liquid state. The recovered Na can be drawn from the holding vessel via a faucet. Na remaining after completion of the crystal-growing process does not contain impurities of high vapor pressure, and is thus of high purity. Therefore, reuse, as flux, of the recovered Na enables manufacture of a Group III nitride semiconductor whose concentration of impurities is low.
摘要:
The back surface of a semiconductor crystal substrate 102 which has a thickness of about 150 μm and is made of undoped GaN bulk crystal consists of a polished plane 102a which is flattened through dry-etching and a grinded plane 102b which is formed in a taper shape and is flattened through dry-etching. On about 10 nm in thickness of GaN n-type clad layer (low carrier concentration layer) 104, about 2 nm in thickness of Al0.005In0.045Ga0.95N well layer 51 and about 18 nm in thickness of Al0.12Ga0.88N barrier layer 52 are deposited alternately as an active layer 105 which emits ultraviolet light and has MQW structure comprising 5 layers in total. Before forming a negative electrode (n-electrode c) on the polished plane of the semiconductor substrate a, the polished plane is dry-etched.
摘要翻译:半导体晶体基板102的背面,其厚度为约150μm,由未掺杂的GaN体晶体制成,其由经干蚀刻而平坦化的抛光平面102a和形成在其中的研磨平面102b 锥形,并通过干蚀刻变平。 在GaN n型覆层(低载流子浓度层)104的厚度约为10nm的情况下,厚度为约0.01nm的Al 0.005 In 0.95 Ga 0.95 N阱层51和厚度约为18nm的Al 0.12 N Ga 0.88 N阻挡层52交替地沉积为发射紫外光的有源层105和 总共有5层MQW结构。 在半导体衬底a的抛光平面上形成负电极(n电极c)之前,对该抛光平面进行干式蚀刻。
摘要:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlxGa1−xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1−xN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1−xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1−xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
摘要翻译:本文公开了(1)使用氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,其中n层n 型氮化镓化合物半导体(Al x Ga 1-x N)是包括低载流子浓度的n层和n < 高载流子浓度的+层,前者与绝缘氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻, ; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,包括相对较低的含有p型杂质的低杂质浓度的i L层 低浓度和高浓度的含有p型杂质的高杂质浓度的i H +层,前者与n层相邻; (3)具有上述两个特征的发光半导体器件和(4)制造n型氮化镓系化合物半导体层的方法(Al x Ga Ga 1-x N),通过气相外延从有机金属化合物具有受控的导电性,通过以可控混合比将含硅气体和其它原料气体一起供给到一起。
摘要:
A light-emitting diode or laser diode is provided which uses a Group III nitride compound semiconductor satisfying the formula (Al.sub.x Ga.sub.1-x).sub.y In.sub.1-y N, inclusive of 0.ltoreq.x.ltoreq.1, and 0.ltoreq.y.ltoreq.1. A double hetero-junction structure is provided which sandwiches an active layer between layers having wider band gaps than the active layer. The diode has a multi-layer structure which has either a reflecting layer to reflect emission light or a reflection inhibiting layer. The emission light of the diode exits the diode in a direction perpendicular to the double hetero-junction structure. Light emitted in a direction opposite to the light outlet is reflected by the reflecting film toward the direction of the light outlet. Further, the reflection inhibiting film, disposed at or near the light outlet, helps the release of exiting light by minimizing or preventing reflection. As a result, light can be efficiently emitted by the light-generating diode.
摘要翻译:提供一种发光二极管或激光二极管,其使用满足式(Al x Ga 1-x)y In 1-y N的III族氮化物化合物半导体,包括0≤x≤1,0≤y< = 1。 提供了一种双异质结结构,其在活性层之间具有更宽带隙的层之间夹持有源层。 二极管具有多层结构,其具有反射发射光的反射层或反射抑制层。 二极管的发射光在垂直于双异质结结构的方向上离开二极管。 在与光出口相反的方向上发射的光被反射膜反射到光出口的方向。 此外,设置在光出口处或附近的反射抑制膜通过最小化或防止反射来帮助释放出射光。 结果,光可以被发光二极管有效地发射。
摘要:
Disclosed herein are N-substituted-3-[(2,3-dimethylmaleimido)amino]benzenesulfonamide derivatives of the formula (I): ##STR1## wherein R is Cl, C.sub.1 -C.sub.3 alkyl or C.sub.1 -C.sub.4 alkoxycarbonyl; Z is CH or N; X.sup.1 is Cl or C.sub.1 -C.sub.3 alkoxyl; and X.sup.2 is C.sub.1 -C.sub.3 alkyl or C.sub.1 -C.sub.3 alkoxyl, a process for the preparation thereof, and herbicidal compositions containing the N-substituted-3-[(2,3-dimethylmaleimido)amino]benzenesulfonamide derivatives as active ingredients.
摘要:
Disclosed herein are a derivative of azole having a usefulness in controlling plant fungal diseases, in regulating plant growth and in killing weeds, a process for producing the derivatives of azole and a composition having a fungicidal activity, a plant growth regulating activity and a herbicidal activity and containing the derivative of azole as an active ingredient for use in agriculture and horticulture.
摘要:
Disclosed herein is a derivative of 1,5-diphenyl-1H-1,2,4-triazole-3-carboxamide represented by the formula (I): ##STR1## wherein R is a straight-chain alkyl group having 1 to 10 carbon atoms which is non-substituted or substituted with 1 to 19 fluorine atoms, a branched alkyl group having 3 to 10 carbon atoms which is non-substituted or substituted with 1 to 19 fluorine atoms, a cyclic alkyl group having 3 to 10 carbon atoms, an alkyl group having 1 to 3 carbon atoms which is substituted with an alicyclic structure having 3 to 7 carbon atoms, a phenyl group or an aralkyl group having 7 to 9 carbon atoms; X.sup.1 is a halogen or an alkyl group having 1 to 3 carbon atoms; X.sup.2 is a hydrogen, a halogen or an alkyl group having 1 to 3 carbon atoms; Y.sup.1 is a hydrogen or a fluorine; and Y.sup.2 is a hydrogen or a fluorine, and the herbicidal compositions containing said derivatives as active ingredient therefor.The derivative of 1,5-diphenyl-1H-1,2,4-triazole-3-carboxamide represented by the formula (I) of the present invention is the compound having high herbicidal activity and also showing excellent selectivity for killing weeds alone without doing any serious harm to the crops such as rice, wheat and corn.