Abstract:
An electronic device includes: a base; a conductor pattern formed on the base; and a circuit chip electrically connected to the conductor pattern. The electronic device further includes a reinforcing member which is disposed on the base to surround the circuit chip, whose outer shape is like a ring, and which includes layers stacked in the thickness direction of the base. The lowermost layer of the layers is closest to the base and softer than the layer that is at least one of the remaining layers. The electronic device further includes a sealing member which fills an inside of the reinforcing member while covering the top of the circuit chip, thereby sealing the circuit chip on the base.
Abstract:
A slider tester includes a driving unit that rotates a test medium, a set plate that detachably supports a slider as a single body, and an investigating apparatus that is electrically connected to the slider supported by the set plate and investigates the characteristics of the slider. A movable support part 30 that tiltably supports the slider is provided on the set plate. There is also provided a pressing mechanism that elastically presses the slider via the movable support part toward a surface of the medium to dispose the slider floating over the surface of the medium. The pressing mechanism includes an elastic body 56 composed of a plate spring that contacts the movable support part and elastically presses the movable support part.
Abstract:
A manufacturing method for an electronic apparatus and manufacturing apparatus are provided. The manufacturing method includes applying to a surface of a sheet an adhesive to be charged into a space between a mounting board and an electronic component mounted on the mounting board, bringing the one surface of the sheet into contact with a back surface of the electronic component mounted on the mounting board and charging the adhesive into the space by bringing the adhesive into contact with a peripheral portion of the electronic component under a low pressure, and pressing a heating head against the other surface of the sheet and heating the sheet with the heating head via the sheet to set the adhesive under atmospheric pressure, in a state that the sheet is in contact with the electronic component.
Abstract:
There is provided an objective lens including a first optical member and a second optical member which are made of materials different from each other and are cemented together at a cementing surface. The cementing surface includes a first phase shift structure having a plurality of refractive surface zones concentrically formed about an optical axis of the objective lens. The first phase shift structure satisfies conditions (1) and (2): 0.85
Abstract:
An optical system of an optical pick-up, which is provided with a light source that emits a light beam, and an objective lens that converges the light beam emitted by the light source onto a data recording layer of an optical disc. The optical system satisfies a condition: 0.75
Abstract:
An optical system for an optical head of an optical disc drive is capable of using first and second discs, protective layer of the second disc being thicker than that of the first disc, a data density of the second disc being lower than that of the first disc. A light source selectively emits first and second laser beams having first and second wavelengths, respectively. An objective lens converges the first and second beams on the first and second discs, respectively. The second beam is incident on the objective lens as diverging light, and the first beam is incident on the objective lens as a beam of which degree of divergence is smaller. A diffraction lens structure is formed in the high NA exclusive area, which compensates for aberrations of a portion of the first laser beam, and causes aberrations to a portion of the second laser beam passed therethrough.
Abstract:
An ultrasonic tool, for bonding two materials to each other by joining a face of one of the materials to a face of the other material using the action of ultrasonic waves applied to one of the materials through another face of the one of the materials, wherein the ultrasonic tool has a coating layer comprising chromium oxide as a main component formed on at least the surface of the tool that is in contact with the face of the one of the materials through which the ultrasonic waves are applied to the one of the materials. An ultrasonic bonder provided with the ultrasonic tool is also disclosed.
Abstract:
An objective lens for two or more types of optical discs of different standards is provided. A surface of the objective lens is formed with a diffracting structure, and has an inner area including an optical axis and an outer area. The outer area is configured such that part of a first beam (having a first wavelength for a first optical disc of relatively lower data density) passed through the zones will be substantially in phase (within a prescribed phase difference) with part of the first beam that passed through the inner area. A convergence angle θ of part of the first beam incident on the outermost part of the inner area measured after emerging from the objective lens and a design numerical aperture NAref for the first optical disc satisfy: 0.9
Abstract:
A phase shift element having a central area (for transmitting part of an incident laser beam in the vicinity of the beam central axis) and a first area (giving the laser beam incident thereon a phase difference π relative to a beam passing through the central area) is placed on an optical path between a laser light source and a polygon mirror of a scanning optical system. The scanning optical system including such a phase shift element is installed in a printer. By the effect of the phase shift element, the intensity of side lobes (several rings of light accompanying the main beam) is prevented from exceeding a threshold value even when optical surfaces of an imaging optical system of the scanning optical system have certain microscopic undulations, by which black stripes occurring in halftone printing can be eliminated.
Abstract:
A pain inferring device for designing a shape giving a subject as little pain as possible when the subject touches the shape. The pain inferring device includes an input unit, an output unit, a main control unit, a learning storage unit, and a neural network. The neural network learns the relationship between the input value of shape data and the output value of the data on the degree of pain when a subject touches a shape. By the learning, an input/output function (namely, the coefficient of coupling of neurons in layers) representing the relationship between the input and output values is defined and stored in the learning storage unit. When the shape data is inputted through the input unit, the neural network infers the degree of pain by using the function stored in the learning storage unit.