摘要:
The disclosed embodiment relates to system and method for separating background image from foreground text in one or more electronic pages. The one or more electronic pages are compared to check whether the background image in each of the one or more electronic pages are same. If it found that the one or more electronic pages have common background image, the common background image is subtracted from each of the one or more pages. The foreground text from each of the one or more electronic pages is recognized using an OCR. Finally, the recognized foreground text from each of the one or more electronic pages is consolidated in a file. The consolidated file can be printed or send to one or more recipients over an email.
摘要:
An electronic device enclosure includes a first cover, a second cover located below the first cover, and a bracket for receiving a disk drive. The second cover defining a hole and comprising a shielding panel covering the hole. The shielding panel is deformable to expose the hole, for the disk drive inserting into or being removed out of the bracket.
摘要:
A computing platform may include heterogeneous processors (e.g., CPU and a GPU) to support sharing of virtual functions between such processors. In one embodiment, a CPU side vtable pointer used to access a shared object from the CPU 110 may be used to determine a GPU vtable if a GPU-side table exists. In other embodiment, a shared non-coherent region, which may not maintain data consistency, may be created within the shared virtual memory. The CPU and the GPU side data stored within the shared non-coherent region may have a same address as seen from the CPU and the GPU side. However, the contents of the CPU-side data may be different from that of GPU-side data as shared virtual memory may not maintain coherency during the run-time. In one embodiment, the vptr may be modified to point to the CPU vtable and GPU vtable stored in the shared virtual memory.
摘要:
Embodiments of the invention provide language support for CPU-GPU platforms. In one embodiment, code can be flexibly executed on both the CPU and GPU. CPU code can offload a kernel to the GPU. That kernel may in turn call preexisting libraries on the CPU, or make other calls into CPU functions. This allows an application to be built without requiring the entire call chain to be recompiled. Additionally, in one embodiment data may be shared seamlessly between CPU and GPU. This includes sharing objects that may have virtual functions. Embodiments thus ensure the right virtual function gets invoked on the CPU or the GPU if a virtual function is called by either the CPU or GPU.
摘要:
Methods and apparatus for optimizing idle mode stand-by time in wireless device operable in a multicast system are disclosed. In order to maximize or optimize the stand-by time for idle mode, a time line for decoding of overhead information symbol (OIS) data received in one or more superframes in the wireless device. Based on the determined time line, an offset time period can be determined for setting an idle mode timer period used by the wireless device to decode the OIS information. By offsetting the timer period, a wireless device can be ensured to wake up and prepared to latch OIS information before the start of a superframe boundary, thus minimizing the wake up time of the device operating in an idle mode and, in turn, optimizing stand-by time.
摘要:
In some embodiments, techniques are described for combining an X-ray detector (e.g., for providing EPMA) and an electron detector (e.g., for providing AES) to provide a tool for determining film compositions and thicknesses on a specimen, such as a semiconductor structure or wafer. In one embodiment, a system includes a beam generator configurable to direct a beam towards a specimen. The electron beam may generate Auger electrons and X-rays. The system may also include at least one electron detector disposed adjacent to (e.g., above) the specimen to detect electrons and measure their energies emanating from a top layer of the specimen. One or more X-ray detectors may be disposed adjacent to the specimen to detect X-rays.
摘要:
The present invention provides novel isolated and purified polynucleotides and polypeptides related to functional motifs of the Nogo receptor 1 (NgR1) (e.g., the binding pocket on the side surface of NgR1, functional motifs comprising the amino acid sequence of FRG, etc.) and use of peptides mimicking these functional motifs as antagonists to NgR1 ligands, e.g., myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein, Nogo-A, Nogo-66, GT1b, an antibody to Nogo receptor, an antibody to GT1b, an antibody to p75 neurotrophin receptor, and an antibody to Lingo-1, etc. The invention also provides antibodies to the mimetic peptide antagonists. The present invention is further directed to novel therapeutics and therapeutic targets and to methods of screening and assessing test compounds for treatments requiring axonal regeneration, i.e., reversal of the effects of NgR1 ligand binding to the NgR1 (i.e., producing inhibition of axonal growth). The present invention also is directed to novel methods for treating disorders arising from inhibition of axonal growth mediated by the binding of NgR1 ligands to the NgR1. Further, the invention is directed to methods of treating a subject with a neurodegenerative disorder, including, but not limited to, Parkinson's disease, Alzheimer's disease, progressive supranuclear palsy, multiple sclerosis, multiple system atrophy, corticobasal degeneration, Huntington's disease, dementia with Lewy bodies, spinocerebellar ataxia, stroke, spinal cord trauma, traumatic brain injury, multiinfarct dementia, epilepsy, and senile dementia, comprising, e.g., antagonizing NgR1.
摘要:
An apparatus capable of measuring topography and transparent film thickness of a patterned metal-dielectric layer on a substrate without contact with the layer. A broadband interferometer measures an absolute phase of reflection at a plurality of wavelengths from a plurality of locations within a field of view on the metal-dielectric patterned layer on the substrate, and produces reflection phase data. An analyzer receives the reflection phase data and regresses the transparent film thickness and the topography at each of the plurality of locations from the reflection phase data. In this manner, the apparatus is not confused by the phase changes produced in the reflected light by the transparent layers, because the thickness of the transparent layers are determined by using the reflection phase data from multiple wavelengths. Further, the surface topography of the layer, whether it be opaque or transparent is also determinable. Thus, the present invention provides a means by which both transparent layer thickness and topography can be determined on an array surface of transparent and opaque layers, without contacting the surface of the layers.
摘要:
Various embodiments are generally directed an apparatus and method for configuring an execution environment in a user space for device driver operations and redirecting a device driver operation for execution in the execution environment in the user space including copying instructions of the device driver operation from the kernel space to a user process in the user space. In addition, the redirected device driver operation may be executed in the execution environment in the user space.
摘要:
Embodiments of the invention provide language support for CPU-GPU platforms. In one embodiment, code can be flexibly executed on both the CPU and GPU. CPU code can offload a kernel to the GPU. That kernel may in turn call preexisting libraries on the CPU, or make other calls into CPU functions. This allows an application to be built without requiring the entire call chain to be recompiled. Additionally, in one embodiment data may be shared seamlessly between CPU and GPU. This includes sharing objects that may have virtual functions. Embodiments thus ensure the right virtual function gets invoked on the CPU or the GPU if a virtual function is called by either the CPU or GPU.