摘要:
A method of forming a strained semiconductor-on-insulator (SSOI) substrate that does not include wafer bonding is provided. In this disclosure a relaxed and doped silicon layer is formed on an upper surface of a silicon-on-insulator (SOI) substrate. In one embodiment, the dopant within the relaxed and doped silicon layer has an atomic size that is smaller than the atomic size of silicon and, as such, the in-plane lattice parameter of the relaxed and doped silicon layer is smaller than the in-plane lattice parameter of the underlying SOI layer. In another embodiment, the dopant within the relaxed and doped silicon layer has an atomic size that is larger than the atomic size of silicon and, as such, the in-plane lattice parameter of the relaxed and doped silicon layer is larger than the in-plane lattice parameter of the underlying SOI layer. After forming the relaxed and doped silicon layer on the SOI substrate, the dopant within the relaxed and doped silicon layer is removed from that layer converting the relaxed and doped silicon layer into a strained (compressively or tensilely) silicon layer that is formed on an upper surface of an SOI substrate.
摘要:
A semiconductor-on-insulator hetero-structure and a method for fabricating the semiconductor -on-insulator hetero-structure include a crystalline substrate and a dielectric layer located thereupon having an aperture that exposes the crystalline substrate. The semiconductor-on -insulator hetero-structure and the method for fabricating the semiconductor-on-insulator hetero-structure also include a semiconductor layer of composition different than the crystalline substrate located within the aperture and upon the dielectric layer. A portion of the semiconductor layer located aligned over the aperture includes a defect. A portion of the semiconductor layer located aligned over the dielectric layer does not include a defect. Upon removing the portion of the semiconductor layer located aligned over the aperture a reduced defect semiconductor-on-insulator hetero-structure is formed.
摘要:
A semiconductor-on-insulator hetero-structure and a method for fabricating the semiconductor-on-insulator hetero-structure include a crystalline substrate and a dielectric layer located thereupon having an aperture that exposes the crystalline substrate. The semiconductor-on-insulator hetero-structure and the method for fabricating the semiconductor-on-insulator hetero-structure also include a semiconductor layer of composition different than the crystalline substrate located within the aperture and upon the dielectric layer. A portion of the semiconductor layer located aligned over the aperture includes a defect. A portion of the semiconductor layer located aligned over the dielectric layer does not include a defect. Upon removing the portion of the semiconductor layer located aligned over the aperture a reduced defect semiconductor-on-insulator hetero-structure is formed.
摘要:
A method of fabricating a strained semiconductor-on-insulator (SSOI) substrate is provided. The method includes first providing a structure that includes a substrate, a doped and relaxed semiconductor layer on the substrate, and a strained semiconductor layer on the doped and relaxed semiconductor layer. In the invention, the doped and relaxed semiconductor layer having a lower lattice parameter than the substrate. Next, at least the doped and relaxed semiconductor layer is converted into a buried porous layer and the structure including the buried porous layer is annealed to provide a strained semiconductor-on-insulator substrate. During the annealing, the buried porous layer is converted into a buried oxide layer.
摘要:
A cost efficient and manufacturable method of fabricating strained semiconductor-on-insulator (SSOI) substrates is provided that avoids wafer bonding. The method includes growing various epitaxial semiconductor layers on a substrate, wherein at least one of the semiconductor layers is a doped and relaxed semiconductor layer underneath a strained semiconductor layer; converting the doped and relaxed semiconductor layer into a porous semiconductor via an electrolytic anodization process, and oxidizing to convert the porous semiconductor layer into a buried oxide layer. The method provides a SSOI substrate that includes a relaxed semiconductor layer on a substrate; a high-quality buried oxide layer on the relaxed semiconductor layer; and a strained semiconductor layer on the high-quality buried oxide layer. In accordance with the present invention, the relaxed semiconductor layer and the strained semiconductor layer have identical crystallographic orientations.
摘要:
Compressively strained silicon is epitaxially grown directly onto a silicon substrate at low temperature using hydrogen to engineer the strain level. Hydrogen dilution may be varied during such growth to provide a strain gradient.
摘要:
A smooth germanium layer which can be grown directly on a silicon semiconductor substrate by exposing the substrate to germanium precursor in the presence of phosphine at temperature of about 350C. The germanium layer formation can be achieved with or without a SiGe seed layer. The process to form the germanium layer can be integrated into standard CMOS processing to efficiently form a structure embodying a thin, highly strained germanium layer. Such structure can enable processing flexibility. The germanium layer can also provide unique physical properties such as in an opto-electronic devices, or to enable formation of a layer of group III-V material on a silicon substrate.
摘要:
Low-temperature in-situ techniques are provided for the removal of oxide from a silicon surface during CMOS epitaxial processing. Oxide is removed from a semiconductor wafer having a silicon surface, by depositing a SiGe layer on the silicon surface; etching the SiGe layer from the silicon surface at a temperature below 700 C (and above, for example, approximately 450 C); and repeating the depositing and etching steps a number of times until a contaminant is substantially removed from the silicon surface. In one variation, the deposited layer comprises a group IV semiconductor material and/or an alloy thereof.
摘要:
A method of forming a strained semiconductor-on-insulator (SSOI) substrate that does not include wafer bonding is provided. In this disclosure a relaxed and doped silicon layer is formed on an upper surface of a silicon-on-insulator (SOI) substrate. In one embodiment, the dopant within the relaxed and doped silicon layer has an atomic size that is smaller than the atomic size of silicon and, as such, the in-plane lattice parameter of the relaxed and doped silicon layer is smaller than the in-plane lattice parameter of the underlying SOI layer. In another embodiment, the dopant within the relaxed and doped silicon layer has an atomic size that is larger than the atomic size of silicon and, as such, the in-plane lattice parameter of the relaxed and doped silicon layer is larger than the in-plane lattice parameter of the underlying SOI layer. After forming the relaxed and doped silicon layer on the SOI substrate, the dopant within the relaxed and doped silicon layer is removed from that layer converting the relaxed and doped silicon layer into a strained (compressively or tensilely) silicon layer that is formed on an upper surface of an SOI substrate.
摘要:
An embedded, strained epitaxial semiconductor material, i.e., an embedded stressor element, is formed at the footprint of at least one pre-fabricated field effect transistor that includes at least a patterned gate stack, a source region and a drain region. As a result, the metastability of the embedded, strained epitaxial semiconductor material is preserved and implant and anneal based relaxation mechanisms are avoided since the implants and anneals are performed prior to forming the embedded, strained epitaxial semiconductor material.