Abstract:
A system comprises a plurality of sensors, a sensor processor, and a sampling rate engine. The sensor processor is coupled to an output of each sensor of the plurality of sensors. The sensor processor estimates user dynamics in response to a first output signal of a first sensor of the plurality of sensors. The sampling rate engine is coupled to an output of the sensor processor./ The sampling rate engine determines a sampling rate value of a second sensor of the plurality of sensors in response to a user dynamics value from the sensor processor. The second sensor comprises a selectable sampling rate. The selectable sampling rate is configured in response to the sampling rate value determined by the sampling rate engine.
Abstract:
A power provider circuit includes a plurality of power delivery controllers, a single stage power supply, and control circuitry. Each of the plurality of power delivery controllers is configured to provide power to a detachable device. The single stage power supply is configured to generate the power for provision to the detachable devices, and to provide the power at a plurality of selectable voltages. The control circuitry configured to select a given voltage of the plurality of selectable voltages to be made available via all of the power delivery controllers based on power utilization capabilities and other optional status indications reported by the detachable devices.
Abstract:
Described examples include USB port controllers with a control circuit configured to switch from a normal first power mode to a second power mode for reduced power consumption in response a command from a port manager circuit, and to switch from the second power mode to the first power mode in response to detected activity on a communications connection, or a detected connection of a USB device to a USB port connector. After switching back to the first power mode in response to detected communications activity, the control circuit automatically switches operation of the USB port controller back to the second power mode unless a communications transaction addressed to the USB port controller is received within a non-zero certain time after switching from the second power mode to the first power mode.
Abstract:
At least some of the embodiments are methods including detecting low user dynamics by a first MEMS sensor, determining a first sensor sampling rate value corresponding to the low user dynamics wherein the first sensor sampling rate value is less than a second sensor sampling rate value corresponding to high user dynamics, and adjusting a sampling rate of a second MEMS sensor to the first sensor sampling rate value.
Abstract:
A system for crowd-sourced fingerprinting has a positioning database and a mobile wireless device. The positioning database is configured to store information relating wireless local area network access point (AP) signal measurements to points of a geographic positioning grid. The mobile wireless device has a satellite positioning system, a transceiver, a motion measurement system, and position estimation logic. The position estimation logic is configured to determine a reference location as the device passes between areas of satellite positioning signal reception and satellite positioning signal non-reception. The device further configured to record measurements of movements provided by the motion measurement system and measurements of signals provided by the transceiver within areas of non-reception and to provide results to the positioning database.
Abstract:
An electronic circuit includes a receiver circuit (BSP) operable to perform coherent summations having a coherent summations time interval, and a power control circuit (2130) coupled to said receiver circuit (BSP) and operable to impress a power controlling duty cycle (TON, TOFF) on the receiver circuit (BSP) inside the coherent summations time interval. Other circuits, devices, systems, methods of operation and processes of manufacture are also disclosed.
Abstract:
At least some of the embodiments are methods including detecting low user dynamics by a first MEMS sensor, determining a first sensor sampling rate value corresponding to the low user dynamics wherein the first sensor sampling rate value is less than a second sensor sampling rate value corresponding to high user dynamics, and adjusting a sampling rate of a second MEMS sensor to the first sensor sampling rate value.
Abstract:
A bidirectional level shifter circuit includes first and second driver circuits, first and second comparators, and a control circuit. The first driver circuit includes a first driver output and a first enable input. The second driver circuit includes a second driver output and a second enable input. The first comparator includes a first comparator output, a first reference input, and a first comparator input that is coupled to the second driver output. The second comparator includes a second comparator output, a second reference input, and a second comparator input is coupled to the first driver output. The control circuit includes a first control input coupled to the first comparator output, a second control input coupled to the second comparator output, a first control output coupled to the first enable input, and a second control output coupled to the second enable input.
Abstract:
An example apparatus includes: a switch having a first current terminal, a second current terminal and a control terminal, the first current terminal adapted to be coupled to a first capacitor, the second current terminal adapted to be coupled to a second capacitor; a comparator having a comparator input and a comparator output, the comparator input coupled to a configuration terminal; a deglitch circuit having a deglitch input and a deglitch output, the deglitch input coupled to the comparator output, the deglitch circuit having a deglitch duration between a first duration and a second duration; and a universal serial bus (USB) controller having a controller output and a controller input, the controller output coupled to the control terminal, the controller input coupled to the deglitch output.
Abstract:
A circuit comprising a first processing element having a first output configured to couple to a voltage control circuit, a second output configured to couple to a gate terminal of a first transistor, and a third output configured to couple to a first node and a control circuit. The control circuit comprises a second processing element having multiple outputs, a second transistor having a gate terminal configured to couple to one of the outputs of the second processing element, a first terminal configured to couple to a second node and to a drain terminal of the first transistor, and a second terminal, and a third transistor having a gate terminal configured to couple to a second of the outputs of the second processing element, a first terminal configured to couple to a third node, and a second terminal.