Abstract:
An electrostatic discharge (ESD) protection apparatus and method for fabricating the same are disclosed herein. In some embodiments, the ESD protection apparatus comprises: an internal circuit formed in a first wafer; an array of electrostatic discharge (ESD) circuits formed in a second wafer, wherein the ESD circuits include a plurality of ESD protection devices each coupled to a corresponding switch and configured to protect the internal circuit from a transient ESD event; and a switch controller in the second wafer, wherein the switch controller is configured to control, based on a control signal from the first wafer, each of the plurality of ESD protection devices to be activated or deactivated by the corresponding switch, and wherein the first wafer is bonded to the second wafer.
Abstract:
The present disclosure provides embodiments of semiconductor devices. A semiconductor device according to the present disclosure include an elongated semiconductor member surrounded by an isolation feature and extending lengthwise along a first direction, a first source/drain feature and a second source/drain feature over a top surface of the elongated semiconductor member, a vertical stack of channel members each extending lengthwise between the first source/drain feature and the second source/drain feature along the first direction, a gate structure wrapping around each of the channel members, an epitaxial layer deposited on the bottom surface of the elongated semiconductor member, a silicide layer disposed on the epitaxial layer, and a conductive layer disposed on the silicide layer.
Abstract:
An IC structure includes first and second gates, first and second source/drain regions, and an isolation region. The first and second gates each have a first portion extending along a first direction and a second portion extending along a second direction. The first source/drain regions are respectively on opposite sides of the first portion of the first gate. The second source/drain regions are respectively on opposite sides of the first portion of the second gate. The isolation region has a lower portion between a first one of the first source/drain regions and a first one of the second source/drain regions, and an upper portion partially overlapping with the second portion of first gate and the second portion of the second gate. A width of the lower portion is a less than a width of the upper portion.
Abstract:
An electrostatic discharge (ESD) circuit includes: a cascade of NMOS transistors including a first NMOS transistor operatively cascaded to a second NMOS transistor wherein the cascade of NMOS transistors is operatively coupled to a first bus that receives an ESD pulse signal; a first single-gate-oxide ESD control circuit coupled to the first NMOS transistor and configured to turn on the first NMOS transistor during an ESD event, the first single-gate-oxide control circuit coupled between the first bus at a first voltage and a first node at a second voltage, wherein the first voltage is higher than the second voltage; a second single-gate-oxide control circuit operatively coupled to the second NMOS transistor and configured to turn on the second NMOS transistor during an ESD event and to turn off the second NMOS transistor during a normal operation, wherein the second single-gate-oxide control circuit is coupled between the first node at the second voltage and a second bus at a ground voltage, wherein the second voltage is higher than the ground voltage; and a voltage divider circuit operatively coupled to the first bus at the first voltage and the second bus at the ground voltage, wherein the voltage divider circuit is operatively coupled to the first single-gate-oxide ESD control circuit and the second single-gate-oxide ESD control circuit at the first node.
Abstract:
An integrated circuit (IC) device includes a plurality of first TAP cells of a first semiconductor type, and a plurality of second TAP cells of a second semiconductor type different from the first semiconductor type. The plurality of first TAP cells is arranged in at least two columns, the at least two columns adjacent each other in a first direction and extending in a second direction transverse to the first direction. Each of the plurality of first TAP cells has a first length in the first direction. The plurality of second TAP cells includes at least one second TAP cell extending in the first direction between the at least two columns over a second length greater than the first length of each of the plurality of first TAP cells in the first direction.
Abstract:
An electrostatic discharge (ESD) circuit includes: a cascade of NMOS transistors including a first NMOS transistor operatively cascaded to a second NMOS transistor wherein the cascade of NMOS transistors is operatively coupled to a first bus that receives an ESD pulse signal; a first single-gate-oxide ESD control circuit coupled to the first NMOS transistor and configured to turn on the first NMOS transistor during an ESD event, the first single-gate-oxide control circuit coupled between the first bus at a first voltage and a first node at a second voltage, wherein the first voltage is higher than the second voltage; a second single-gate-oxide control circuit operatively coupled to the second NMOS transistor and configured to turn on the second NMOS transistor during an ESD event and to turn off the second NMOS transistor during a normal operation, wherein the second single-gate-oxide control circuit is coupled between the first node at the second voltage and a second bus at a ground voltage, wherein the second voltage is higher than the ground voltage; and a voltage divider circuit operatively coupled to the first bus at the first voltage and the second bus at the ground voltage, wherein the voltage divider circuit is operatively coupled to the first single-gate-oxide ESD control circuit and the second single-gate-oxide ESD control circuit at the first node.
Abstract:
An electrostatic discharge (ESD) circuit includes: a cascade of NMOS transistors including a first NMOS transistor operatively cascaded to a second NMOS transistor wherein the cascade of NMOS transistors is operatively coupled to a first bus that receives an ESD pulse signal; a first single-gate-oxide ESD control circuit coupled to the first NMOS transistor and configured to turn on the first NMOS transistor during an ESD event, the first single-gate-oxide control circuit coupled between the first bus at a first voltage and a first node at a second voltage, wherein the first voltage is higher than the second voltage; a second single-gate-oxide control circuit operatively coupled to the second NMOS transistor and configured to turn on the second NMOS transistor during an ESD event and to turn off the second NMOS transistor during a normal operation, wherein the second single-gate-oxide control circuit is coupled between the first node at the second voltage and a second bus at a ground voltage, wherein the second voltage is higher than the ground voltage; and a voltage divider circuit operatively coupled to the first bus at the first voltage and the second bus at the ground voltage, wherein the voltage divider circuit is operatively coupled to the first single-gate-oxide ESD control circuit and the second single-gate-oxide ESD control circuit at the first node.
Abstract:
A method is disclosed that includes the operations outlined below. A plurality of dummy conductive cells that provide different densities are formed in a plurality of empty areas in a plurality of metal layers of a semiconductor device according to overlap conditions of the empty areas between each pair of neighboring metal layers.
Abstract:
An integrated circuit includes a layer of a semiconductor device including a standard cell configuration having a fixed gate electrode pitch between gate electrode lines and a resistor formed of metal between the fixed gate electrode pitch of the standard cell configuration. In one embodiment, the integrated circuit can be charged device model (CDM) electrostatic discharge (ESD) protection circuit for a cross domain standard cell having the resistor formed of metal. A method of manufacturing integrated circuits includes forming a plurality of gate electrode lines separated by a gate electrode pitch to form a core standard cell device, applying at least a first layer of metal within the gate electrode pitch to form a portion of a resistor, and applying at least a second layer of metal to couple to the first layer of metal to form another portion of the resistor.
Abstract:
The present disclosure provides embodiments of semiconductor devices. A semiconductor device according to the present disclosure include an elongated semiconductor member surrounded by an isolation feature and extending lengthwise along a first direction, a first source/drain feature and a second source/drain feature over a top surface of the elongated semiconductor member, a vertical stack of channel members each extending lengthwise between the first source/drain feature and the second source/drain feature along the first direction, a gate structure wrapping around each of the channel members, an epitaxial layer deposited on the bottom surface of the elongated semiconductor member, a silicide layer disposed on the epitaxial layer, and a conductive layer disposed on the silicide layer.