摘要:
A thermosetting epoxy resin composition characterized by containing as a resin ingredient a product of pulverization of a solid matter obtained by reacting a triazine derivative/epoxy resin with an acid anhydride in such a proportion that the amount of the epoxy groups is 0.6-2.0 equivalents to the acid anhydride groups.
摘要:
An epoxy resin composition comprising (A) at least one epoxy resin comprising (a) a naphthalene ring-containing epoxy resin having at least one substituted or unsubstituted naphthalene ring in a molecule and having an epoxy equivalent of 175 to 210, (B) a phenolic resin having at least one substituted or unsubstituted naphthalene ring in a molecule, and (C) an inorganic filler, the substituted or unsubstituted naphthalene ring of the epoxy resin (a) being contained in an amount of 45 to 60% by weight in the total amount of the epoxy resin (A) is best suited for semiconductor encapsulation because it has good flow, a low coefficient of linear expansion, a high Tg, minimal moisture absorption, and crack resistance upon lead-free soldering.
摘要:
An epoxy resin composition contains (A) an epoxy resin, (B) a curing agent, (C) an inorganic filler, and (D) catalyzed microcapsules containing an imidazole compound or organic phosphorus compound and having a mean particle size of 0.5-50 &mgr;m, the quantity of the catalyst leached out from the microcapsules in o-cresol at 30° C. for 15 minutes being at least 70% by weight of the entire catalyst quantity. The composition is suited for semiconductor package encapsulation since it has satisfactory catalyst latency, storage stability and cure.
摘要:
An epoxy resin composition comprising (A) 20-80 parts by weight of an epoxy resin, (B) 20-80 parts by weight of a curing agent, (C) 0.1-50 parts by weight of a phosphorus-containing flame retardant, and (D) 200-1,200 parts by weight of an inorganic filler cures into products having improved high-temperature exposure resistance, flame retardancy, and reflow cracking resistance. The composition eliminates blending of antimony trioxide and brominated compounds and is useful in encapsulating semiconductor devices for imparting high-temperature reliability.
摘要:
An epoxy resin composition is provided comprising (A) an epoxy resin, (B) a phenolic resin curing agent, (C) an inorganic filler, (D) a cure accelerator, (E) an adhesion promoter, and (F) a metal oxide. The metal oxide (F) is a combination of a magnesium/aluminum ion exchanger, a hydrotalcite ion exchanger, and a rare earth oxide in a ratio of 0.5-20:0.5-20:0.01-10 pbw, relative to 100 pbw of epoxy resin (A) and curing agent (B) combined.
摘要:
An epoxy resin composition comprising (A) a polyfunctional epoxy resin, (B) a phenolic resin, (C) an inorganic filler, and (D) curing catalyst-containing microcapsules having a mean particle size of 0.5-50 &mgr;m is suited for semiconductor package encapsulation since it minimizes the warpage of packages and has satisfactory catalyst latency, storage stability and cure.
摘要:
In semiconductor encapsulating epoxy resin compositions comprising an epoxy resin, a curing agent and an inorganic filler, 1-90% by weight of the inorganic filler is spherical cristobalite. The compositions are able to achieve higher loadings of inorganic filler, allow easy control of the coefficient of thermal expansion, and provide high-quality cured products having improved thermal conductivity and low moisture absorption.
摘要:
When a second detector determines that a character image has a halftone (YES in #1) and a third detector (48) determines that a font size of the character image is equal to or greater than a threshold value β and equal to or smaller than a threshold value α (YES in step #4), a fourth detector determines whether a presently focused pixel constitutes a particular portion of a character (step #5). When the fourth detector determines that the pixel data of the presently focused pixel constitutes the particular portion of the character (YES in step #5), the image processing section sets the pixel data to be subjected to a second screen processing which is performed at a higher gradation level (step #6).
摘要:
An angle detecting head provided with an emitter and a pair of receivers is rocked, and a bent surface of a workpiece bent by a punch and a die of a bending machine is irradiated with a measurement light from the emitter, a reflected light is received by the pair of receivers, and a bending angle of the workpiece is obtained from a peak value of the light received by the respective receivers. The angle detecting head is movable parallel to the die, is movable in a direction close to and away from the workpiece, and is movable in a direction in which the die is raised/lowered. The angle detecting head is positioned in an optimum angle measurement position of the workpiece and the bending angle is measured. Moreover, the bending machine presses the workpiece to the vicinity of a target angle, measures the bending angle of the workpiece during final pressing, removes pressure to bring the workpiece to an unloaded state, measures the bending angle of the workpiece, and obtains and stores a difference between the final pressing angle measured value and the unloaded angle measured value as a spring-back amount.