Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first fin-shaped structure on a substrate; forming a first single diffusion break (SDB) structure in the first fin-shaped structure; forming a first gate structure on the first SDB structure and a second gate structure on the first fin-shaped structure; forming an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; forming a patterned mask on the first gate structure; and performing a replacement metal gate (RMG) process to transform the second gate structure into a metal gate.
Abstract:
A fin shaped structure and a method of forming the same. The method includes providing a substrate having a first fin structure and a second fin structure. Next, an insulation material layer is formed on the substrate. Then, a portion of the first fin structure is removed, to form a first recess. Following this, a first buffer layer and a first channel layer are formed sequentially in the first recess. Next, a portion of the second fin structure is removed, to form a second recess. Then, a second buffer layer and a second channel layer are formed in the second recess sequentially, wherein the second buffer layer is different from the first buffer layer.
Abstract:
A method for fabricating substrate of a semiconductor device includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
Abstract:
A method for fabricating substrate of a semiconductor device is disclosed. The method includes the steps of: providing a first silicon layer; forming a dielectric layer on the first silicon layer; bonding a second silicon layer to the dielectric layer; removing part of the second silicon layer and part of the dielectric layer to define a first region and a second region on the first silicon layer, wherein the remaining of the second silicon layer and the dielectric layer are on the second region; and forming an epitaxial layer on the first region of the first silicon layer, wherein the epitaxial layer and the second silicon layer comprise same crystalline orientation.
Abstract:
A fin shaped structure and a method of forming the same. The method includes providing a substrate having a first fin structure and a second fin structure. Next, an insulation material layer is formed on the substrate. Then, a portion of the first fin structure is removed, to form a first recess. Following this, a first buffer layer and a first channel layer are formed sequentially in the first recess. Next, a portion of the second fin structure is removed, to form a second recess. Then, a second buffer layer and a second channel layer are formed in the second recess sequentially, wherein the second buffer layer is different from the first buffer layer.
Abstract:
A transistor structure is provided in the present invention. The transistor structure includes: a substrate comprising a N-type well, a gate disposed on the N-type well, a spacer disposed on the gate, a first lightly doped region in the substrate below the spacer, a P-type source/drain region disposed in the substrate at two sides of the gate, a silicon cap layer covering the P-type source/drain region and the first lightly doped region and a silicide layer disposed on the silicon cap layer, and covering only a portion of the silicon cap layer.
Abstract:
Provided is a method of fabricating a MOS device including the following steps. At least one gate structure is formed on a substrate, wherein the gate structure includes a gate conductive layer and a hard mask layer disposed on the gate conductive layer. A first implant process is performed to form source and drain extension regions in the substrate, wherein the gate conductive layer is covered by the hard mask layer. A process is of removing the hard mask layer is performed to expose the surface of the gate conductive layer. A second implant process is performed to form pocket doped regions in the substrate, wherein the gate conductive layer is not covered by the hard mask layer.
Abstract:
Provided is a method of fabricating a MOS device including the following steps. At least one gate structure is formed on a substrate, wherein the gate structure includes a gate conductive layer and a hard mask layer disposed on the gate conductive layer. A first implant process is performed to form source and drain extension regions in the substrate, wherein the gate conductive layer is covered by the hard mask layer. A process is of removing the hard mask layer is performed to expose the surface of the gate conductive layer. A second implant process is performed to form pocket doped regions in the substrate, wherein the gate conductive layer is not covered by the hard mask layer.
Abstract:
Provided is a semiconductor structure including a circuit layer, an island-shaped conductive layer, a MRAM cell, a bit line and a conductive via. The circuit layer is disposed on a substrate. The island-shaped conductive layer is disposed on the circuit layer. The MRAM cell is disposed between the island-shaped conductive layer and the circuit layer, and is electrically connected to the island-shaped conductive layer and the circuit layer. The bit line is disposed on the island-shaped conductive layer. The conductive via is disposed between the bit line and the island-shaped conductive layer. The island-shaped conductive layer is in contact with a top surface of the MRAM cell.
Abstract:
A transistor with a fin structure and a nanosheet includes a fin structure. A first gate device is disposed on the fin structure. A first source/drain layer is disposed at one side of the first gate device. A first source/drain layer is on the fin structure and extends into the fin structure. A second source/drain layer is disposed at another side of the first gate device. The second source/drain layer is on the fin structure and extends into the fin structure. A nanosheet is disposed above the first gate device, between the first source/drain layer and the second source/drain layer, and contacts the first source/drain layer and the second source/drain layer. A second gate device surrounds the nanosheet.