摘要:
A semiconductor structure in which a planar semiconductor device and a horizontal carbon nanotube transistor have a shared gate and a method of fabricating the same are provided in the present application. The hybrid semiconductor structure includes at least one horizontal carbon nanotube transistor and at least one planar semiconductor device, in which the at least one horizontal carbon nanotube transistor and the at least one planar semiconductor device have a shared gate and the at least one horizontal carbon nanotube transistor is located above a gate of the at least one planar semiconductor device.
摘要:
A method of manufacturing an integrated circuit structure implants a first-type of channel implant in a first area of a substrate and implants a second-type of channel implant in a second area of the substrate. The method forms at least one first gate conductor above the first area of the substrate and forms at least one second gate conductor above the second area of the substrate. The method forms a hard mask over the first gate conductor, the second gate conductor, and the substrate. The hard mask comprises an oxide or a nitride and patterns an organic photoresist over the hard mask, to leave the organic photoresist on areas of the hard mask that are above the first area of the substrate. The method removes portions of the hard mask not protected by the organic photoresist to leave the hard mask on the first area of the substrate and not on the second area of the substrate. The method then removes the organic photoresist, implants impurities in the second area of the substrate to form source and drain regions adjacent the second gate conductor; and removes the hard mask using a wet etching process.
摘要:
A method and structure for forming a semiconductor structure. A semiconductor substrate is provided. A trench is formed within the semiconductor substrate. A first layer of electrically insulative material is formed within the trench. A first portion and a second portion of the first layer of electrically insulative material is removed. A second layer of electrically insulative material is selectively grown on the first layer comprising the removed first portion and the removed second portion.
摘要:
Conductive sidewall spacer structures are formed using a method that patterns structures (mandrels) and activates the sidewalls of the structures. Metal ions are attached to the sidewalls of the structures and these metal ions are reduced to form seed material. The structures are then trimmed and the seed material is plated to form wiring on the sidewalls of the structures.
摘要:
A finFET structure includes a semiconductor fin located over a substrate. A gate electrode is located traversing the semiconductor fin. The gate electrode has a spacer layer located adjoining a sidewall thereof. The spacer layer does not cover completely a sidewall of the semiconductor fin. The gate electrode and the spacer layer may be formed using a vapor deposition method that provides for selective deposition upon a sidewall of a mandrel layer but not upon an adjoining surface of the substrate, so that the spacer layer does not cover completely the sidewall of the semiconductor fin. Other microelectronic structures may be fabricated using the lateral growth methodology.
摘要:
A method for forming a borderless contact for a semiconductor FET (Field Effect Transistor) device, the method comprising, forming a gate conductor stack on a substrate, forming spacers on the substrate, such that the spacers and the gate conductor stack partially define a volume above the gate conductor stack, wherein the spacers are sized to define the volume such that a stress liner layer deposited on the gate conductor stack substantially fills the volume, depositing a liner layer on the substrate, the spacers, and the gate conductor stack, depositing a dielectric layer on the liner layer, etching to form a contact hole in the dielectric layer, etching to form the contact hole in the liner layer, such that a portion of a source/drain diffusion area formed in the substrate is exposed and depositing contact metal in the contact hole.
摘要:
A sidewall image transfer process for forming sub-lithographic structures employs a layer of sacrificial polymer containing silicon that is deposited over a gate conductor layer and covered by a cover layer. The sacrificial polymer layer is patterned with conventional resist and etched to form a sacrificial mandrel. The edges of the mandrel are oxidized or nitrided in a plasma at low temperature, after which the polymer and the cover layer are stripped, leaving sublithographic sidewalls. The sidewalls are used as hardmasks to etch sublithographic gate structures in the gate conductor layer.
摘要:
An immersion lithography apparatus and method, and a lithographic optical column structure are disclosed for conducting immersion lithography with at least the projection optics of the optical system and the wafer in different fluids at the same pressure. In particular, an immersion lithography apparatus is provided in which a supercritical fluid is introduced about the wafer, and another fluid, e.g., an inert gas, is introduced to at least the projection optics of the optical system at the same pressure to alleviate the need for a special lens. In addition, the invention includes an immersion lithography apparatus including a chamber filled with a supercritical immersion fluid and enclosing a wafer to be exposed and at least a projection optic component of the optical system.
摘要:
Semiconductor structures and method of forming semiconductor structures. The semiconductor structures including nano-structures or fabricated using nano-structures. The method of forming semiconductor structures including generating nano-structures using a nano-mask and performing additional semiconductor processing steps using the nano-structures generated.
摘要:
Embodiments of the invention present a system, method, etc. for illumination light in an immersion lithography stepper for particle or bubble detection. More specifically, embodiments herein provide an immersion lithography expose system comprising a wafer holder for holding a wafer, an immersion liquid for covering the wafer, an immersion head to dispense and contain said immersion liquid, and a light source adapted to lithographically expose a resist on the wafer. The system also comprises a light detector at a first location of the immersion head and a laser source at a second location within said immersion head.