MICRO-LOCATION OF DEVICES WITHIN A WIRELESS NETWORK USING ROOM BOUNDARY IMAGES
    21.
    发明申请
    MICRO-LOCATION OF DEVICES WITHIN A WIRELESS NETWORK USING ROOM BOUNDARY IMAGES 有权
    使用房间边界图像在无线网络中的设备的微位置

    公开(公告)号:US20170039445A1

    公开(公告)日:2017-02-09

    申请号:US14817299

    申请日:2015-08-04

    Abstract: In a system for detecting location of an object inside of a building, an image capture device of a mobile electronic device captures an image of a boundary of a room in which the portable electronic device is positioned. The system extracts features of a boundary (ceiling, wall or floor) in the image to determine whether the mobile device is in a known location. When the system identifies a known location, it will take an action that provides the portable electronic device with additional functionality at the identified known location. Such functionality may include connecting to a wireless network or communicating with a stationary device at the known location.

    Abstract translation: 在用于检测建筑物内的物体的位置的系统中,移动电子设备的图像捕获设备捕获便携式电子设备所在的房间的边界的图像。 系统提取图像中的边界(天花板,墙壁或地板)的特征,以确定移动设备是否在已知位置。 当系统识别已知位置时,它将采取一种动作,为所识别的已知位置提供便携式电子设备的附加功能。 这种功能可以包括连接到无线网络或者在已知位置与固定设备通信。

    Method and system for automated sequencing of vehicles in side-by-side drive-thru configurations via appearance-based classification
    22.
    发明授权
    Method and system for automated sequencing of vehicles in side-by-side drive-thru configurations via appearance-based classification 有权
    通过基于外观的分类,并行驱动通过配置的车辆自动排序方法和系统

    公开(公告)号:US09483838B2

    公开(公告)日:2016-11-01

    申请号:US14632587

    申请日:2015-02-26

    Abstract: This disclosure provides a method and system for automated sequencing of vehicles in side-by-side drive-thru configurations via appearance-based classification. According to an exemplary embodiment, an automated sequencing method includes computer-implemented method of automated sequencing of vehicles in a side-by-side drive-thru, the method comprising: a) an image capturing device capturing video of a merge-point area associated with multiple lanes of traffic merging; b) detecting in the video a vehicle as it traverses the merge-point area; c) classifying the detected vehicle associated with traversing the merge-point area as coming from one of the merging lanes; and d) aggregating vehicle classifications performed in step c) to generate a merge sequence of detected vehicles.

    Abstract translation: 本公开提供了一种通过基于外观的分类来并行驱动通过配置的车辆的自动排序的方法和系统。 根据示例性实施例,自动排序方法包括以并行驱动的车辆的自动排序的计算机实现的方法,所述方法包括:a)图像捕获装置,其捕获与相关联的合并点区域的视频 多个车道合并; b)当车辆横穿合并点区域时,视频中检测车辆; c)将与遍历合并点区域相关联的检测到的车辆分类为来自合并车道之一; 以及d)聚合在步骤c)中执行的车辆分类,以产生检测到的车辆的合并序列。

    HIGH-RESOLUTION IMAGING DEVICES USING LOW-RESOLUTION SENSORS AND COMPRESSIVE SENSING EXPLOITING JOINT SPARSITY
    24.
    发明申请
    HIGH-RESOLUTION IMAGING DEVICES USING LOW-RESOLUTION SENSORS AND COMPRESSIVE SENSING EXPLOITING JOINT SPARSITY 有权
    使用低分辨率传感器的高分辨率成像装置和压缩感测开发接头空间

    公开(公告)号:US20160173771A1

    公开(公告)日:2016-06-16

    申请号:US14566835

    申请日:2014-12-11

    CPC classification number: H04N5/23232 H04N5/2254 H04N5/2259

    Abstract: A method and system for reconstructing an image of a scene comprises configuring a digital light modulator according to a spatially varying pattern. Light energy associated with the scene and incident on the spatially varying pattern is collected and optically focused on the photodetectors. Data indicative of the intensity of the focused light energy from each of said at least two photodetectors is collected. Data from the photodetectors is then combined to reconstruct an image of the scene.

    Abstract translation: 用于重建场景的图像的方法和系统包括根据空间变化的图案配置数字光调制器。 收集与场景相关的光能和空间变化图案上的入射光,并光学地聚焦在光电探测器上。 收集指示来自所述至少两个光电检测器中的每一个的聚焦光能的强度的数据。 然后将来自光电检测器的数据组合以重建场景的图像。

    Method and systems of classifying a vehicle using motion vectors
    26.
    发明授权
    Method and systems of classifying a vehicle using motion vectors 有权
    使用运动矢量对车辆进行分类的方法和系统

    公开(公告)号:US09286516B2

    公开(公告)日:2016-03-15

    申请号:US13914752

    申请日:2013-06-11

    CPC classification number: G06K9/00624 G06K9/00785 G06K9/3241 G06K2209/23

    Abstract: This disclosure provides methods and systems of classifying a vehicle using motion vectors associated with captured images including a vehicle. According to an exemplary method, a cluster of motion vectors representative of a vehicle within a target region is analyzed to determine geometric attributes of the cluster and/or measure a length of a detected vehicle, which provides a basis for classifying the detected vehicle.

    Abstract translation: 本公开提供了使用与包括车辆的捕获图像相关联的运动矢量对车辆进行分类的方法和系统。 根据示例性方法,分析表示目标区域内的车辆的运动矢量的群集,以确定群集的几何属性和/或测量检测到的车辆的长度,这为检测到的车辆进行分类提供了依据。

    Method and apparatus for processing image of scene of interest
    28.
    发明授权
    Method and apparatus for processing image of scene of interest 有权
    用于处理感兴趣的场景的图像的方法和装置

    公开(公告)号:US09158985B2

    公开(公告)日:2015-10-13

    申请号:US14195036

    申请日:2014-03-03

    Abstract: A method for processing an image of a scene of interest includes receiving an original target image of a scene of interest at an image processing device from an image source device, the original target image exhibiting shadowing effects associated with the scene of interest when the original target image was captured, the original target image comprising a plurality of elements and representing an instantaneous state for the scene of interest, pre-processing the original target image using a modification identification algorithm to identify elements of the original target image to be modified, and generating a copy mask with a mask region representing the elements to be modified and a non-mask region representing other elements of the original target image. An image processing device for processing an image of a scene of interest and a non-transitory computer-readable medium are also provided.

    Abstract translation: 用于处理感兴趣场景的图像的方法包括:从图像源装置在图像处理装置处接收感兴趣场景的原始目标图像,原始目标图像在原始目标时显示与感兴趣场景相关联的阴影效果 拍摄图像,原始目标图像包括多个元素并表示感兴趣场景的瞬时状态,使用修改识别算法对原始目标图像进行预处理,以识别要修改的原始目标图像的元素,并且生成 具有表示要修改的元素的掩模区域的复制掩模和表示原始目标图像的其他元素的非掩模区域。 还提供了一种用于处理感兴趣场景的图像和非暂时性计算机可读介质的图像处理装置。

    METHOD, SYSTEM, AND APPARATUS FOR SEMI-AUTOMATIC RISK AND AUTOMATIC TARGETING AND ACTION PRIORITIZATION IN LOAN MONITORING APPLICATIONS
    29.
    发明申请
    METHOD, SYSTEM, AND APPARATUS FOR SEMI-AUTOMATIC RISK AND AUTOMATIC TARGETING AND ACTION PRIORITIZATION IN LOAN MONITORING APPLICATIONS 审中-公开
    用于半自动风险的方法,系统和装置以及贷款监测应用中的自动定位和行为优先

    公开(公告)号:US20150269670A1

    公开(公告)日:2015-09-24

    申请号:US14222099

    申请日:2014-03-21

    CPC classification number: G06Q40/025

    Abstract: Presented are a method, system, and apparatus for semi-automatic and automatic loan risk targeting and action prioritization in loan monitoring applications. In an off-line mode, a computing device associated with a multi-window computer-based tool receives a plurality of loan account histories for loan risk analysis. A predictive multi-output risk model is trained with the received plurality of loan account histories, the predictive multi-output risk model indicating a risk level associated with each of the loan accounts. In an online mode, the user is presented an option for semi-automatic loan analysis, in which the user is presented with output of a predictive multi-output risk model associated with the plurality of loan accounts. The user is also presented with the option for automatic loan analysis, allowing the user to be automatically presented with loan accounts at a greatest level of risk of all loan accounts.

    Abstract translation: 提出了一种用于半自动和自动贷款风险定位的方法,系统和设备,以及贷款监控应用中的行动优先级。 在离线模式中,与多窗口计算机工具相关联的计算设备接收用于贷款风险分析的多个贷款账户历史。 用接收到的多个贷款账户历史来训练预测性多输出风险模型,指示与每个贷款账户相关联的风险水平的预测性多产出风险模型。 在在线模式中,向用户呈现半自动贷款分析的选项,其中向用户呈现与多个贷款账户相关联的预测性多输出风险模型的输出。 还向用户提供了自动贷款分析的选项,允许用户自动呈现所有贷款账户风险最大的贷款账户。

    NON-CONTACT MONITORING OF SPATIO-TEMPORAL RESPIRATORY MECHANICS VIA DEPTH SENSING
    30.
    发明申请
    NON-CONTACT MONITORING OF SPATIO-TEMPORAL RESPIRATORY MECHANICS VIA DEPTH SENSING 审中-公开
    通过深度感测的空间呼吸机制的非接触式监测

    公开(公告)号:US20150265187A1

    公开(公告)日:2015-09-24

    申请号:US14223402

    申请日:2014-03-24

    Abstract: Systems and methods are proposed for non-contact monitoring of spatio-temporal mechanics comprising motion patterns of respiratory muscles, lungs and diaphragm. The depth capable sensors system is comprised of modules, including a depth estimation module, a reference shape generation module, a region of interest shape estimation module, and a shape comparison module. A recommender module is optionally included. The acquisition of spatio-temporal respiratory mechanic data comprising a time varying sequence of spatially dependent representations of the respiratory mechanics of the subject are processed for identifying differences between the subject's actual respiratory mechanics and desired mechanics that can improve the health of the subject, or identify particular maladies.

    Abstract translation: 提出了系统和方法用于非接触监测包括呼吸肌,肺和隔膜的运动模式的时空力学。 深度能力传感器系统包括模块,包括深度估计模块,参考形状生成模块,感兴趣区域形状估计模块和形状比较模块。 可选地包括推荐器模块。 处理包含受试者的呼吸力学的空间依赖性表示的时变序列的时空呼吸机械数据的获取被用于识别受试者的实际呼吸力学和可改善受试者健康的所需力学之间的差异,或识别 特别的疾病。

Patent Agency Ranking