Abstract:
In a system for detecting location of an object inside of a building, an image capture device of a mobile electronic device captures an image of a boundary of a room in which the portable electronic device is positioned. The system extracts features of a boundary (ceiling, wall or floor) in the image to determine whether the mobile device is in a known location. When the system identifies a known location, it will take an action that provides the portable electronic device with additional functionality at the identified known location. Such functionality may include connecting to a wireless network or communicating with a stationary device at the known location.
Abstract:
This disclosure provides a method and system for automated sequencing of vehicles in side-by-side drive-thru configurations via appearance-based classification. According to an exemplary embodiment, an automated sequencing method includes computer-implemented method of automated sequencing of vehicles in a side-by-side drive-thru, the method comprising: a) an image capturing device capturing video of a merge-point area associated with multiple lanes of traffic merging; b) detecting in the video a vehicle as it traverses the merge-point area; c) classifying the detected vehicle associated with traversing the merge-point area as coming from one of the merging lanes; and d) aggregating vehicle classifications performed in step c) to generate a merge sequence of detected vehicles.
Abstract:
This disclosure provides methods and systems for form a trajectory of a moving vehicle captured with an image capturing device. According to one exemplary embodiment, a method forms a trajectory of a moving vehicle and determines if the vehicle is moving in one of a permitted manner and an unpermitted manner relative to the appropriate motor vehicle lane restriction laws and/or regulations.
Abstract:
A method and system for reconstructing an image of a scene comprises configuring a digital light modulator according to a spatially varying pattern. Light energy associated with the scene and incident on the spatially varying pattern is collected and optically focused on the photodetectors. Data indicative of the intensity of the focused light energy from each of said at least two photodetectors is collected. Data from the photodetectors is then combined to reconstruct an image of the scene.
Abstract:
A method, non-transitory computer readable medium, and apparatus for side-by-side traffic location load balancing are disclosed. For example, the method receives one or more video images of a side-by-side traffic location, determines a number of cars in a first lane and a number of cars in a second lane of the side-by-side traffic location based upon the one or more video images, calculates a delta between the number of cars in the first lane and the number of cars in the second lane and recommends the first lane or the second lane based upon the delta and a respective weighting factor associated with the first lane and the second lane to provide a load balance of the cars at the side-by-side traffic location.
Abstract:
This disclosure provides methods and systems of classifying a vehicle using motion vectors associated with captured images including a vehicle. According to an exemplary method, a cluster of motion vectors representative of a vehicle within a target region is analyzed to determine geometric attributes of the cluster and/or measure a length of a detected vehicle, which provides a basis for classifying the detected vehicle.
Abstract:
This disclosure provides a method and system to locate/detect static occlusions associated with an image captured scene including a tracked object. According to an exemplary method, static occlusions are automatically located by monitoring the motion of single or multiple objects in a scene over time and with the use of an associated accumulator array.
Abstract:
A method for processing an image of a scene of interest includes receiving an original target image of a scene of interest at an image processing device from an image source device, the original target image exhibiting shadowing effects associated with the scene of interest when the original target image was captured, the original target image comprising a plurality of elements and representing an instantaneous state for the scene of interest, pre-processing the original target image using a modification identification algorithm to identify elements of the original target image to be modified, and generating a copy mask with a mask region representing the elements to be modified and a non-mask region representing other elements of the original target image. An image processing device for processing an image of a scene of interest and a non-transitory computer-readable medium are also provided.
Abstract:
Presented are a method, system, and apparatus for semi-automatic and automatic loan risk targeting and action prioritization in loan monitoring applications. In an off-line mode, a computing device associated with a multi-window computer-based tool receives a plurality of loan account histories for loan risk analysis. A predictive multi-output risk model is trained with the received plurality of loan account histories, the predictive multi-output risk model indicating a risk level associated with each of the loan accounts. In an online mode, the user is presented an option for semi-automatic loan analysis, in which the user is presented with output of a predictive multi-output risk model associated with the plurality of loan accounts. The user is also presented with the option for automatic loan analysis, allowing the user to be automatically presented with loan accounts at a greatest level of risk of all loan accounts.
Abstract:
Systems and methods are proposed for non-contact monitoring of spatio-temporal mechanics comprising motion patterns of respiratory muscles, lungs and diaphragm. The depth capable sensors system is comprised of modules, including a depth estimation module, a reference shape generation module, a region of interest shape estimation module, and a shape comparison module. A recommender module is optionally included. The acquisition of spatio-temporal respiratory mechanic data comprising a time varying sequence of spatially dependent representations of the respiratory mechanics of the subject are processed for identifying differences between the subject's actual respiratory mechanics and desired mechanics that can improve the health of the subject, or identify particular maladies.