摘要:
An encapsulated semiconductor device and method wherein an encapsulant material is deposited on the device in an environment that enhances device performance. Illustrative encapsulant materials are organic polymers, silicon polymers and metal/polymer-layered encapsulants. Encapsulant formation environments may include inert, reducing and ammonia gas environment. Further disclosed are an encapsulated transistor and a semiconductor device.
摘要:
The present invention provides apparatus and a method of fabricating the apparatus. The apparatus includes a substrate having a surface and an organic field-effect transistor (OFET) located adjacent the surface of the substrate. The OFET comprising a gate, a channel, a source electrode, and a drain electrode. The channel comprises a densified layer of organic molecules with conjugated multiple bonds, axes of the organic molecules being oriented substantially normal to the surface.
摘要:
Semiconductor apparatus comprising: a substrate having a substrate surface; a layer of a first material overlying a first region of the substrate surface; a layer of a semiconductor overlying the layer of first material and overlying a second region of the substrate surface; a first region of the layer of semiconductor, overlying the layer of first material and having a first conductivity; a second region of the layer of semiconductor, overlying the second region of the substrate surface and having a second conductivity; and the first conductivity being substantially different from the second conductivity. Such semiconductor apparatus further comprising a layer of a second material overlying the second region of the substrate surface, the second region of the layer of semiconductor overlying the layer of the second material.
摘要:
The present invention provides a dual organic field-effect transistor (OFET) structure and a method of fabricating the structure. The dual OFET structure includes an n-type organic semiconductor layer and a p-type organic semiconductor layer in contact with each other along an interface and forming a stack. The dual OFET structure also includes a source electrode and a drain electrode, the source and drain electrodes being in contact with one of the organic semiconductor layers. The dual OFET structure further includes first and second gate structures located on opposite sides of the stack. The first gate structure is configured to control a channel region of the n-type organic semiconductor layer, and the second gate structure is configured to control a channel region of the p-type organic semiconductor layer.
摘要:
A method fabricates ICs in which organic semiconductor crystallites serve as active channels of semiconductor devices. The method includes providing a substrate with a surface that has a preselected pattern of adhesion sites located thereon. The adhesion sites are prepared to adhere crystallites of an organic semiconductor. The method also includes applying a plurality of crystallites of the organic semiconductor to the surface to enable a portion of the applied crystallites to adhere at the prepared adhesion sites.
摘要:
Semiconductor apparatus comprising: a substrate having a substrate surface; a layer of a first material overlying a first region of the substrate surface; a layer of a semiconductor overlying the layer of first material and overlying a second region of the substrate surface; a first region of the layer of semiconductor, overlying the layer of first material and having a first conductivity; a second region of the layer of semiconductor, overlying the second region of the substrate surface and having a second conductivity; and the first conductivity being substantially different from the second conductivity. Such semiconductor apparatus further comprising a layer of a second material overlying the second region of the substrate surface, the second region of the layer of semiconductor overlying the layer of the second material.
摘要:
An electronic odor sensor includes first and second amplifiers, a biasing network, and a device connected to receive the output signals from the first and second amplifiers. The device is configured to correlate the received output signals to the presence or absence of an odor. The first and second amplifiers have respective first and second organic semiconductor layers and are configured to produce output signals responsive to the conductivities of their respective organic semiconductor layers. The conductivities of the organic semiconductor layers are responsive to voltages applied to associated ones of the amplifiers and to the presence of the odor. The biasing network applies the voltages to the amplifiers.
摘要:
The specification describes thin film transistor (TFT) devices with source/drain contacts made by a metallo organic deposition (MOD) method wherein a metallo organic compound/metal particulate mixture is deposited to form a base pattern, and the base pattern is then plated with gold. The porous, relatively high resistance base pattern is thereby converted to a corrosion resistant, low resistance contact. The plating covers the sidewalls of the base pattern, thus allowing the final channel length to be less than the minimum design rule used for depositing the base pattern.
摘要:
An organic semiconducting material having bi-polar charge transport characteristics is described which may comprise the active layer of a field-effect transistor. The semiconducting material comprises a bi-polar polymeric film effective for hole or electron transport comprising a polymer having a conjugated framework with functional moieties capable of solvating ions or promoting ionic charge transport. The conjugated framework is selected from at least one of thiophene, pyrrole, benzene, naphthalene, antrhacene, and antrhacene-dione, and the functional moieties are selected from (i) functional side groups comprising salts of carboxylic acid and sulfonic acid and (ii) functional sites selected from heteroatoms having electron lone pairs comprising sulfur, nitrogen, and oxygen. The field-effect mobility of the bi-polar polymeric film is at least 10−3 cm2/Vs when operating as an n-type or p-type device.
摘要翻译:描述了具有双极电荷传输特性的有机半导体材料,其可以包括场效应晶体管的有源层。 所述半导体材料包括对空穴或电子传输有效的双极性聚合物膜,其包含具有共轭骨架的聚合物,所述共轭骨架具有能够溶剂化离子或促进离子电荷转移的官能部分。 共轭骨架选自噻吩,吡咯,苯,萘,并五烯和并十七烯中的至少一种,功能部分选自(i)包含羧酸和磺酸盐的官能侧基和(ii) 选自具有包含硫,氮和氧的电子孤对的杂原子的官能位点。 当作为n型或p型器件工作时,双极性聚合物膜的场效应迁移率至少为10 -3 cm 2 / Vs。