Abstract:
An on-chip inductor may be fabricated by creating at least one dielectric layer, creating at least one conductive winding on the at least one dielectric layer and creating: (1) a P-well layer having a major surface parallel to a major surface of the dielectric layer, (2) field oxide layer having a major surface parallel to a major surface of the dielectric layer, (3) P-well and field oxide layer, or (4) a poly-silicon layer having a major surface parallel to a major surface of the dielectric layer.
Abstract:
An on-chip inductor and/or on-chip transformer includes at least one dielectric layer and at least one conductive winding on the at least one dielectric layer. The conductive winding has a substantially square geometry and has at least its exterior corners geometrically shaped to reduce impedance of the conductive winding at a particular operating frequency. Since the quality factor of an on-chip inductor is inversely proportional to the effective series impedance of an inductor at an operating frequency, by reducing the effective series impedance, the quality factor is increased.
Abstract:
An on-chip impedance matching includes a transistor, an inductor, and a capacitive divider. The gate of the transistor is operably coupled to receive input signals; the source of the transistor is coupled to a first DC voltage potential; and the drain of the transistor is operably coupled to the inductor. The other end of the inductor is operably coupled to a second DC voltage potential. The capacitive divider includes matched capacitors that, in combination with the inductor, provide for substantially lossless on-chip impedance matching, where a tap of the capacitive divider provides an output of the on-chip impedance matching power amplifier. In addition, the capacitance of the capacitive divider and the inductance of the inductor are tuned to provide a tank circuit for the on-chip impedance matching power amplifier.
Abstract:
A radio frequency integrated circuit includes a power amplifier, a low noise amplifier, a first transformer balun, and a second transformer balun. The power amplifier includes a first power amplifier section and a second power amplifier section. When enabled, the first and second power amplifier sections amplify an outbound radio frequency (RF) signal to produce a first amplified outbound RF signal and a second amplified outbound RF signal, respectively. The power amplifier provides the first amplified outbound RF signal to the first transformer balun and the second outbound RF signal to the second transformer balun, where the first transformer balun is coupled to a first antenna and the second transformer balun is coupled to a second antenna. The low noise amplifier includes a first low noise amplifier section and a second low noise amplifier section. When enabled, the first low noise amplifier section amplifies a first inbound RF signal to produce a first amplified inbound RF signal, and, when enabled, the second low noise amplifier section amplifies a second inbound RF signal to produce a second amplified inbound RF signal. The low noise amplifier receives the first inbound RF signal from the first transformer balun and receives the second inbound RF signal from the second transformer balun.
Abstract:
A VCO for a PLL may include a ring oscillator having a power supply controlled in response to the VCO's control voltage input and an inverter having an input coupled to the ring oscillator's output and also supplied with a power supply controlled by the control voltage input. Together, the output of the ring oscillator and the output of the inverter may closely approximate a differential signal. The VCO may include an amplifier for amplifying a differential input to an output in the voltage domain of the system including the PLL. The output of the ring oscillator may be used as an input to the amplifier, and the output of the inverter may be used as the other input. The power supply terminals of the ring oscillator and the inverter may be coupled to outputs of a current mirror. In one implementation, the current mirror may not be cascoded.
Abstract:
An apparatus may include a first system and a second system. The first system includes a first plurality of interface circuits, and each of the first plurality of interface circuits is configured to couple to a separate interface. The second system includes a second plurality of interface circuits, and each of the second plurality of interface circuits is configured to couple to a separate interface. A first interface circuit of the first plurality of interface circuits and a second interface circuit of the second plurality of interface circuits are coupled to a first interface. Both the first interface circuit and the second interface circuit are configured to communicate packets, coherency commands, and noncoherent commands on the first interface.
Abstract:
An apparatus includes one or more interface circuits, an interconnect, a memory controller, a memory bridge, a packet DMA circuit, and a switch. The memory controller, the memory bridge, and the packet DMA circuit are coupled to the interconnect. Each interface circuit is coupled to a respective interface to receive packets and/or coherency commands from the interface. The switch is coupled to the interface circuits, the memory bridge, and the packet DMA circuit. The switch is configured to route the coherency commands from the interface circuits to the memory bridge and the packets from the interface circuits to the packet DMA circuit. The memory bridge is configured to initiate corresponding transactions on the interconnect in response to at least some of the coherency commands. The packet DMA circuit is configured to transmit write transactions on the interconnect to the memory controller to store the packets in memory.
Abstract:
The present invention relates to a DC offset canceling circuit. In one aspect of the invention, a DC offset canceling circuit with independently configurable gain and roll-off frequency is provided. In one embodiment of the present invention, the DC offset canceling circuit is used in the receive path of a down-conversion wireless receiver. In another aspect of the invention, a method for independently varying the gain and the roll-off frequency of the DC offset canceling circuit is provided. In one embodiment, the method is used to independently operate a gain control scheme and a DC offset cancellation strategy in a DC canceling circuit.
Abstract:
An integrated circuit with low-power built-in self-test logic (“IC-LPBIST”) is disclosed. The IC-LPBIST may include combinational logic and a loading circuit enabled to load a shift test pattern of data into the loading circuit without powering the combinational logic of the IC-LPBIST, wherein the shift test pattern of data is configured to test the combinational logic for logical faults.