Abstract:
A CAS system and method for guiding an operator in inserting a femoral implant in a femur as a function of a limb length and orientation of the femoral implant with respect to the femur, comprising a reference tool for the femur, a registration tool, a bone altering tool and a sensing apparatus. A controller is connected to the sensing apparatus to: i) register a frame of reference of the femur by calculating surface information provided by the registration tool as a function of the position and orientation of the registration tool provided by the sensing apparatus, and/or retrieving in a database a model of the femur; ii) calculate a desired implant position with respect to the frame of reference as a function of the limb length; and iii) calculate a current implant position and orientation in relation to the desired implant position with respect to alterations being performed in the femur with the bone altering tool, as a function of the position and orientation of the bone altering tool provided by the sensing apparatus and of a digital model of a femoral implant provided by the database. The database is connected to the controller for the controller to store and retrieve information relating to an operation of the controller. The computer-assisted system may be used to guide an operator in inserting a pelvic implant in an acetabulum as a function of an orientation of the pelvic implant with respect to the pelvis.
Abstract:
A method and system for planning a creation of a cement bore in a bone comprises obtaining a virtual model of a bone, the model of the bone including a proximal bone surface, a distal bone surface, and a depth profile between the proximal bone surface and the distal bone surface. A planned positioning of a first implant selected to be implanted in the proximal bone surface is obtained. An identity of at least one tool used to alter the proximal bone surface to receive the first implant in the planned positioning and obtaining geometry data for the at least one tool is obtained. A cement bore required in the bone using the geometry data of the at least one tool and the planned positioning of the first implant is generated. The virtual model of the bone with the cement bore indicative of a relation between the cement bore and the distal bone surface is output.
Abstract:
A system for calculating a position and orientation of an acetabular cup in computer-assisted surgery comprises a first trackable reference secured to a pelvis, with a frame of reference being associated with the first trackable reference. A device is positionable between a femoral neck and the acetabulum of the pelvis in a known relation, the device having a second trackable reference. Sensors track the trackable references for position and orientation. A position/orientation calculator calculates a position and orientation of the frame of reference and of the device and for determining an orientation of the neck axis with respect to the frame of reference from the known relation at a desired position of the femur. An implant position/orientation calculator provides cup implanting information with respect to the orientation of said neck axis as a function of the tracking for position and orientation of at least the first trackable reference.
Abstract:
A detection device for detecting X rays and signaling the detection to a computer-assisted surgery processor system comprises an X ray detector unit having an X ray detector adapted to be positioned within a radiation field. The X ray detector emits a detection signal upon being excited by an X ray of a given intensity. A transmitter outputs the detection signal in radio frequency. A receiver receives the detection signal in radio frequency and forwards the detection signal to a computer-assisted surgery processor system to signal the detection of the X ray. A method is provided as well.
Abstract:
A CAS system and method for guiding an operator in inserting a femoral implant in a femur as a function of a limb length and orientation of the femoral implant with respect to the femur, comprising a reference tool for the femur, a registration tool, a bone altering tool and a sensing apparatus. A controller is connected to the sensing apparatus to: i) register a frame of reference of the femur by calculating surface information provided by the registration tool as a function of the position and orientation of the registration tool provided by the sensing apparatus, and/or retrieving in a database a model of the femur; ii) calculate a desired implant position with respect to the frame of reference as a function of the limb length; and iii) calculate a current implant position and orientation in relation to the desired implant position with respect to alterations being performed in the femur with the bone altering tool, as a function of the position and orientation of the bone altering tool provided by the sensing apparatus and of a digital model of a femoral implant provided by the database. The database is connected to the controller for the controller to store and retrieve information relating to an operation of the controller. The computer-assisted system may be used to guide an operator in inserting a pelvic implant in an acetabulum as a function of an orientation of the pelvic implant with respect to the pelvis.
Abstract:
A computer-assisted surgery system for guiding alterations to a bone, comprises a trackable member secured to the bone. The trackable member has a first inertial sensor unit producing orientation-based data. A positioning block is secured to the bone, and is adjustable once the positioning block is secured to the bone to be used to guide tools in altering the bone. The positioning block has a second inertial sensor unit producing orientation-based data. A processing system providing an orientation reference associating the bone to the trackable member comprises a signal interpreter for determining an orientation of the trackable member and of the positioning block. A parameter calculator calculates alteration parameters related to an actual orientation of the positioning block with respect to the bone.
Abstract:
A pelvic digitizer device comprises a body comprising: a shaft having a tooling end and a handle end with a handle for being manipulated. A visual guide is oriented in a reference plane of the digitizer device. A cup is connected to the tooling end and adapted to be received in an acetabulum of a patient. An inertial sensor unit is connected to the body, the inertial sensor unit having a preset orientation aligned with the reference plane.
Abstract:
A method for locating a guide wire axis on a femoral neck comprises the steps of tracking a position and orientation of a femur; registering a frame of reference with respect to the position and orientation of the femur from a first registration probe mounted onto the femur in a predetermined configuration, the frame of reference having preoperative planned data pertaining to the femoral neck; digitizing femoral neck data with respect to the position and orientation of the femur from a second registration probe positioned onto the femoral neck at desired orientations; calculating a position and orientation of the guide wire axis with respect to the position and orientation of the femur as a function of the preoperative planned data and the femoral neck data.
Abstract:
There is described a device for use with a position sensing system to register position and orientation in a reference-coordinate system, the device comprising a set of at least three base units removably and non-invasively attachable to a skin surface covering a bone, each of the base units having a reference marker attached thereto, the reference markers being one of passive and active devices recognized by the position sensing system and positioned and oriented in the reference coordinate system with respect to a fixed reference, the base units adapted to measure a distance between the skin surface and the bone in conjunction with an ultrasound component.
Abstract:
A positioning block for use in knee surgery includes a rotational mounting removably engageable to the bone element by a multi-axial fastener such that the mounting element is selectively rotatable relative to the bone element about at least two substantially perpendicular axes of rotation. A guide body portion is engaged with the rotational mounting element such that it is translatable relative thereto along while being rotationally fixed relative to the mounting element. The guide body portion is moveable relative to the bone element in at least three degrees of freedom, the three degrees of freedom including at least two rotational degrees of freedom and at least one translational degree of freedom. A trackable member on the guide body portion is identified and tracked by a computer assisted surgery system.