Abstract:
A semiconductor device and methods for manufacturing the same are disclosed. The semiconductor device includes a semiconductor stack structure attached to a wafer handle having at least one aperture that extends through the wafer handle to an exposed portion of the semiconductor stack structure. A thermally conductive and electrically resistive polymer substantially fills the at least one aperture and contacts the exposed portion of the semiconductor stack structure. One method for manufacturing the semiconductor device includes forming patterned apertures in the wafer handle to expose a portion of the semiconductor stack structure. The patterned apertures may or may not be aligned with sections of RF circuitry making up the semiconductor stack structure. A following step includes contacting the exposed portion of the semiconductor stack structure with a polymer and substantially filling the patterned apertures with the polymer, wherein the polymer is thermally conductive and electrically resistive.
Abstract:
A method and apparatus for measuring a complex gain of a transmit path are disclosed. During a test mode, an IQ to radio frequency modulator modulates a quadrature RF carrier signal using a quadrature test signal. An RF to IQ down-converter down-converts a down-converter RF input signal to provide a quadrature down-converter output signal using the quadrature RF carrier signal. The down-converter RF input signal is based on the quadrature test signal and the gain of the transmit path. A digital frequency converter frequency converts the quadrature down-converter output signal, providing an averaged frequency converter output signal, which is a quadrature direct current signal representative of an amplitude of the quadrature test signal and the gain of the transmit path. Therefore, a measured gain of the transmit path is based on the amplitude of the quadrature test signal and averaged frequency converter output signal.
Abstract:
This disclosure relates generally to radio frequency (RF) front-end circuitry for routing RF signals to and/or from one or more antennas. Exemplary RF front-end circuitry includes a multiple throw solid-state transistor switch (MTSTS) and a multiple throw microelectromechanical switch (MTMEMS). The MTSTS may be configured to selectively couple a first pole port to any one of a first set of throw ports. The MTMEMS is configured to selectively couple a second pole port to any one of a second set of throw ports. The second pole port of the MTMEMS is coupled to a first throw port in the first set of throw ports of the MTSTS. The MTSTS helps prevent hot switching in the MTMEMS since the first throw port of the MTSTS may be decoupled from the second pole port of the MTMEMS before decoupling the second pole port from a selectively coupled throw port of the MTMEMS.
Abstract:
Integrated pulse shaping biasing circuitry for a radio frequency (RF) power amplifier includes a square wave signal generator and an inverted ramp signal generator. The square wave signal generator and the inverted ramp signal generator are coupled in parallel between an input node and current summation circuitry. The square wave signal generator generates a square wave signal. The inverted ramp signal generator generates an inverted ramp signal. The current summation circuitry receives the generated square wave signal and the inverted ramp signal, and combines the signals to generate a pulse shaped biasing signal for an RF power amplifier. The square wave signal generator, the inverted ramp signal generator, and the current summation circuitry are monolithically integrated on a single semiconductor die.
Abstract:
The present disclosure provides a power device and power device packaging. Generally, the power device of the present disclosure includes a die backside and a die frontside. A semi-insulating substrate with epitaxial layers disposed thereon is sandwiched between the die backside and the die frontside. Pads on the die frontside are coupled to the die backside with patterned backmetals that are disposed within vias that pass through the semi-insulating substrate and epitaxial layers from the die backside to the die frontside.
Abstract:
A multi-stage radio frequency (RF) power amplifier includes a high-power amplifier path and a low-power amplifier path. The low-power amplifier path includes gain synchronization circuitry in order to synchronize the gain response of the high-power amplifier path and the low-power amplifier path. By synchronizing the gain response of the high-power amplifier path and the low-power amplifier path, the gain linearity of the multi-stage RF amplifier is improved.
Abstract:
A lateral semiconductor device having a vertical region for providing a protective avalanche breakdown (PAB) is disclosed. The lateral semiconductor device has a lateral structure that includes a conductive substrate, semi-insulating layer(s) disposed on the conductive substrate, device layer(s) disposed on the semi-insulating layer(s), along with a source electrode and a drain electrode disposed on the device layer(s). The vertical region is separated from the source electrode by a lateral region wherein the vertical region has a relatively lower breakdown voltage level than a relatively higher breakdown voltage level of the lateral region for providing the PAB within the vertical region to prevent a potentially damaging breakdown of the lateral region. The vertical region is structured to be more rugged than the lateral region and thus will not be damaged by a PAB event.
Abstract:
The present disclosure relates to power supply circuitry that has wide bandwidth and achieves high efficiency by using at least one energy storage element for efficient power transfer between two power supply circuits and to an amplitude modulated load. Specifically, the power supply circuitry may include a first power supply circuit, which may be a switching power supply circuit, a second power supply circuit, which may be a linear power supply circuit and may include the energy storage element, and control circuitry to facilitate efficient power transfer. The control circuitry may select one of multiple operating modes, which may include a first operating mode, during which the first power supply circuit may provide power to the energy storage element, and a second operating mode, during which the second power supply circuit may provide power to the amplitude modulated load from the energy storage element.
Abstract:
A direct current (DC)-DC converter, which includes switching circuitry, a first parallel amplifier, and a second parallel amplifier, is disclosed. The switching circuitry has a switching circuitry output. The first parallel amplifier has a first feedback input and a first parallel amplifier output. The second parallel amplifier has a second feedback input and a second parallel amplifier output. A first inductive element is coupled between the switching circuitry output and the first feedback input. A second inductive element is coupled between the first feedback input and the second feedback input.
Abstract:
The present disclosure relates to envelope power supply calibration of a multi-mode RF power amplifier (PA) to ensure adequate headroom when operating using one of multiple communications modes. The communications modes may include multiple modulation modes, a half-duplex mode, a full-duplex mode, or any combination thereof. As such, each communications mode may have specific peak-to-average power and linearity requirements for the multi-mode RF PA. As a result, each communications mode may have corresponding envelope power supply headroom requirements. The calibration may include determining a saturation operating constraint based on calibration data obtained during saturated operation of the multi-mode RF PA. During operation of the multi-mode RF PA, the envelope power supply may be restricted to provide a minimum allowable magnitude based on an RF signal level of the multi-mode RF PA, the communications mode, and the saturation operating constraint to provide adequate headroom.