Abstract:
A flow proportioning mixer is provided for mixing gaseous fuel and air, the mixer having therein a gas chamber adapted to discharge the gaseous fuel to a mixing channel, an air chamber adapted to direct the air into the mixing channel to mix with the fuel, a plunger reciprocally mounted in the mixing channel to define an annular passage in the channel, a pressure regulator for maintaining the pressure of the gas in the gas chamber and the air in the air chamber at a selected ratio, and a motor responsive to an engine exhaust content sensor to move the plunger in the mixing channel.
Abstract:
An apparatus for cooking an article is provided including a cooking chamber, a heating means for producing heated gases for introduction into said chamber for convective heating without microwave interference, and a source of microwaves for heating with microwave energy. At least one freely rotating stirring means is positioned in gas and microwave communication with the heating chamber, and is caused to rotate from a flow of the heated gases. The stirring means serves to distribute both microwave energy and the heated gases about the chamber for uniform, simultaneous convection and microwave heating. A pilotless gas source is provided which includes an initiation chamber within a combustion chamber. The initiation chamber is positioned by a microwave opaque material and includes a flame sensor which eliminates the flow of gas in the combustion chamber when no flame is present.
Abstract:
A liquid-fueled thermoelectric field burner operable in two modes, a start-up mode and a steady-state mode. A rechargeable battery backed up by a manually operated generator permits cold start-up of a preheat burner followed by operation of a main burner which provides heat to thermoelectric converters which operate to provide necessary power for steady-state operation. Cold start-up is facilitated by atomizing the liquid fuel for combustion in the preheat burner, and steady-state blue flame operation is enhanced by mixing vaporized fuel and preheated air for combustion in a main burner. The thermoelectric converters are cooled by air from a cooling blower.
Abstract:
An exhaust aftertreatment system includes a first stage catalytic converter, a second stage catalytic converter, and a conduit extending from the first stage catalytic converter to the second stage catalytic converter. The conduit passes through an exhaust gas intercooler, between the first and second stage catalytic converts, that reduces the temperature of the exhaust to about 300° F. to about 500° F. Air is ejected into the exhaust conduit to increase the oxygen concentration in the exhaust before it passes through the second stage catalytic converter. The air can be ejected from an air ejection conduit that extends to an engine charger compressor or a compressed air conduit that extends from the engine charger compressor, such as a turbo charger and/or a supercharger, to the engine. A gas particulate filter can be disposed in the exhaust conduit or it can be integrated with the second stage catalytic converter, for example as a catalyzed gas particulate filter.
Abstract:
An assembly and method for reducing nitrogen oxides, carbon monoxide, hydrocarbons and hydrogen gas in exhausts of internal combustion engines and simultaneously generating electrical power, wherein the exhaust is acted upon in a first stage catalytic converter and is at least in part passed through a thermoelectric generator for production of electrical power. The exhausts are thereafter directed to a second stage catalytic converter.
Abstract:
A method for controlling internal combustion engine emissions, including the steps of reading signals from sensors in an engine exhaust manifold and catalytic converter exhaust, an upstream one of the sensors being provided with an air-fuel mixture setpoint, comparing signal values with previous average values and automatically adjusting the air-fuel mixture set point to vary the fuel mixture fed to the engine.
Abstract:
A combined heat and AC power generating system is disclosed having black start capability for the full time, simultaneous production of both electricity and heat. Heat generated within the system is captured and used for heating applications such as heating building air and tap water. The power generating system comprises an engine, generator, rectifier, variable frequency drive inverter, and inverter control electronics. The system provides improved efficiency and prolonged engine life by always operating the engine with its throttle fully open to obtain maximum efficiency and the engine is normally operated near its stall point. In this operating state the inverter control electronics adjust the power output from the inverter to control the speed of the engine. This is done by increasing the power output from the inverter when the power drawn by the load decreases. This causes the engine to operate closer to its stall point and it slows down. The power from the inverter is decreased when the power drawn by the load increases. This causes the engine to operate further from its stall point and it speeds up. The slight power changes to facilitate this operation will always be drawn from or distributed to the electric utility grid so there is no wasted power. The inverter control electronics are responsive to signals from loads such as refrigeration loads to cause the frequency of the inverter output to change to permit the refrigeration load to operate more efficiently.
Abstract:
This invention presents an NO.sub.x environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO.sub.x reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO.sub.x bearing gas stream at a minimum of at least about 75 watts/cubic meter.
Abstract:
Disclosed is a gas-fired oven for heating food by steam and/or dry convection. The oven has a heating chamber; an atomizer for producing an atomized water spray; a source of a combustible gas mixture; and a burner-heat exchanger. The gas fired burner-heat exchanger receives and combusts the mixture and isolates hot combustion gases from the heating chamber so pure steam is furnished to the heating chamber. The heat exchanger receives hot combustion gases, and vaporizes atomized spray circulated over its external surface to produce steam for heating an article in the heating chamber. The amount of steam in the heating chamber is measured and controlled by monitoring a temperature in a drain.