Abstract:
Film-forming compositions which are substantially free of organic solvent and capable of forming a generally continuous film at ambient temperature are provided. The film-forming composition includes at least one thermosettable aqueous dispersion of polymeric microparticles having functionality adapted to react with a crosslinking agent. The polymeric microparticles are prepared by mixing under high shear conditions (1) at least one hydrophobic polymer having reactive functional groups; and (2) at least one hydrophobic crosslinking agent containing functional groups which are reactive with the functional groups of the polymer. Further provided is a multi-component composite coating composition which includes a pigmented base coat and a transparent topcoat of the substantially organic solvent-free film-forming composition described above. Substrates coated with the same are also provided. Additionally, a method for preparing the aqueous dispersion of polymeric microparticles is provided. The substantially organic solvent-free film-forming compositions of the invention are storage stable at room temperature and provide coatings with excellent appearance and performance properties such as adhesion and scratch resistance. The film-forming compositions are suitable for wet-on-wet application over a base coat with little or no mud-cracking.
Abstract:
A coating composition comprising a first component comprising a compound having appended thereto at least one carbamate group, urea group, or group convertible to a carbamate or urea group, and a second component which is a urea crosslinker selected from alkoxy substituted methyl urea crosslinkers where the alkoxy substituent is between 1 and 12 carbons, N,N-dimethyl urea, N,N,N-trimethylurea, and ethyl ethylene urea crosslinkers and mixtures thereof, where the second component is reactive with the carbamate or urea groups on the first component.
Abstract:
A process for lacquer coating substrates with a colored and/or effect base lacquer and a clear lacquer topcoat, in which a colored and/or effect base lacquer layer of a base lacquer coating composition is applied onto a substrate and is provided in a wet-on-wet process with a clear lacquer coating. Before being jointly stoved or jointly cured with the base lacquer layer, the uncured clear lacquer layer is exposed to high-energy radiation. In the clear lacquer coating composition, the resin solids content contains 50 to 98 wt. % of a system A) thermally curable by addition and/or condensation reactions, which system contains substantially no free-radically polymerisable double bonds and substantially no groups capable of reacting in another way with free-radically polymerisable double bonds of a system B). The resin solids content further contains 2 to 50 wt. % of a system B) which is curable under the action of high-energy radiation by free-radical polymerisation of olefinic double bonds, wherein the weight percentages adds up to 100 wt. % and the C═C equivalent weight of the total resin solids content of A) and B) is between 300 and 10000. Clear lacquer coating compositions made by the process are also described.
Abstract:
An abrasive article is formed having a barrier coating coextensive with and interposed between a backing and an abrasive coating. The hardened barrier coating essentially eliminates penetration of the abrasive coating into the backing, especially volatile materials. The barrier coating comprising as starting materials a water-borne resin that upon hardening forms a crystalline or semi-crystalline polymer, a major polyfunctional crosslinking agent, and at least one minor polyfunctional crosslinking agent. The minor polyfunctional crosslinking agent enhances the attachment of the abrasive coating to the barrier coating.
Abstract:
The present invention provides a curable coating composition that includes at least three components. The coating composition includes a component (a) that includes one or both of a compound (a)(1) having at least one carbamate group or terminal urea group according to the invention and having at least two linking groups that are urethane or urea or a compound (a)(2) having at least two groups selected from carbamate groups, terminal urea groups, or combinations of the two and at least four urethane or urea linking groups. The second component (b) of the coating composition includes an acrylic polymer comprising active hydrogen-containing functional groups reactive with the third component(c). Component (c) of the coating composition is a curing agent that is reactive with the first two components. Preparation of coated articles using the compositions of the invention is also disclosed.
Abstract:
An ink-jet recording sheet is provided with at least one ink-receiving layer on at least one side of a base material sheet. A resin component which constitutes the ink-receiving layer comprises a hydrophilic resin containing tertiary amino groups in a molecule thereof or a hydrophilic resin containing tertiary amino groups and polysiloxane segments in a molecule thereof. A coating formulation suitable in use for the production of the ink-jet recording sheet is also disclosed.
Abstract:
A method of molding which comprises preparing a molding material by compounding a filler and a curable composition, the filler being in an amount of 0 to 800 weight parts based on 100 weight parts of the curable composition and optionally aging the molding material at room temperature or by heating, followed by casting the molding material into a mold and curing the molding material under atmospheric pressure or higher, and articles molded by such method. The curable composition comprises: (A) a compound having in the molecule two or more specific blocked carboxyl groups, (B) a compound having in the molecule two or more reactive functional groups which can form chemical bonds with the blocked carboxyl groups, and (C) a catalytic component selected from the following: (a) a thermal latent acid catalyst which comprises a compound having a epoxy group, a specific compound having a sulfur atom and a Lewis acid; (b) a thermal latent acid catalyst which comprises a compound having at least one nitrogen atom, oxygen atom, phosphorus atom or sulfur atom, a compound having a halogen atom and a Lewis acid having at least one aluminum atom, zinc atom or tin atom; or a mixture which comprises (c) a metallic chelate compound and an organic silicon compound or a condensate thereof.
Abstract:
The invention provides a method for providing a low bake repair to a cured coating, especially a composite coating and low bake repair compositions for use therein. The method of the invention involves the provision of a cured coated surface and the application of a low bake repair coating to at least a portion of the cured coated surface. The low bake repair coating of the invention has (A) a film forming component comprising (a) a first component comprising a compound having appended thereto at least one carbamate or urea functional group, or a group convertible to a carbamate or urea group, and (b) a second component comprising a compound reactive with said carbamate or urea groups on component (a), and (B) a catalyst comprising a compound selected from the group consisting of Al(ClO.sub.4).sub.2, Zr(ClO.sub.4).sub.2, and Al(NO.sub.3).sub.2. The low bake repair coating is cured at a temperature of less than 200.degree. F. for a time sufficient to cure the low bake repair coating.
Abstract:
The present invention relates to the preparation of water based coating compositions having extended storage stability. The composition includes separately stored polymeric binder component and a crosslinking component.These components are mixed prior to application over surfaces, such as, road surfaces. The polymeric binder component includes an anionically stabilized binder polymer having at least one reactive functional pendent moiety, or a blend of the binder polymer with a polyfunctional amine. The pot mix of the coating composition has extended storage stability. The waterborne road marking paints of the present invention exhibit improved wear resistance on road surfaces in terms of paint remaining on the road longer than waterborne road marking paints based on the storage stable component alone. The present invention provides road marking paints that can be applied by conventional road striping equipment and do not require special two component spray equipment.
Abstract:
A thermal latent acid catalyst which comprises (i) a compound having an epoxy group, (ii) a compound having a sulfur atom of the following formula: R.sup.5 --S--R.sup.6, wherein R.sup.5 and R.sup.6 are the same or different from each other and are a hydrogen atom or an organic group of 1 to 40 carbon atoms, R.sup.5 and R.sup.6 optionally are bonded with each other to form a cyclic structure; and (iii) a Lewis acid of the following formula: (X.sup.1).sub.n1 --M.sup.1 --(R.sup.7).sub.n2, wherein M.sup.1 is a boron atom, an aluminium atom, a tin atom, a lead atom or a transition element, X.sup.1 is one or more halogen atoms, R.sup.7 is one or more organic groups of 1 to 40 carbon atoms, R.sup.7 optionally forms a chelate ring by coordinating to the M.sup.1 atom, n1 and n2 are each an integer of 0 through 6, and n1 plus n2 equals an integer of 1 to 6. The ratio of the epoxy group of the epoxy compound (i) to the M.sup.1 atom of the Lewis acid is 0.2 to 10 and the ratio of the sulfur atom of the compound (ii) to the M.sup.1 atom of the Lewis acid is 0.2 to 10.