Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), rubberized in situ, of M+N+P construction, comprising a first, internal, layer (C1) consisting of M wires of diameter d1, M varying from 1 to 4, around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps which are performed in line: an assembling step by twisting the N wires around the first layer (C1) in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” of M+N construction; downstream of the assembling point, a sheathing step in which the M+N core strand is sheathed with a rubber composition named “filling rubber” in the uncrosslinked state; an assembling step in which the P wires of the first layer (C3) are twisted around the core strand thus sheathed; a final twist-balancing step. Also disclosed is a device for implementing such a method.
Abstract:
In order that spaces, including a space in the central portion, inside a steel cord used as a reinforcement by being embedded in a tire or the like are filled with an uncured rubber, the uncured rubber is coated on plural steel core filaments which are then stranded to form a single layer steel cord, the core then being stranded with uncoated outer layer filaments. Consequently, it is possible to exhibit satisfactory corrosion resistance and satisfactory fatigue resistance as a steel cord, shorten a curing time in tire component assembling or the like to attain energy saving and prolong the life of a steel cord itself and the life of a tire or the like using the same as a reinforcement. Further, production can be performed at low cost.
Abstract:
The present invention relates to a three-layered metal cable of construction L+M+N usable as a reinforcing element for a tire carcass reinforcement, comprising an inner layer C1 having L wires of diameter d1 with L being from 1 to 4, surrounded by an intermediate layer C2 of M wires of diameter d2 wound together in a helix at a pitch p2 with M being from 3 to 12, said layer C2 being surrounded by an outer layer C3 of N wires of diameter d3 wound together in a helix at a pitch p3 with N being from 8 to 20, said cable being characterised in that a sheath formed of a cross-linkable or cross-linked rubber composition based on at least one diene elastomer covers at least said layer C2. The invention furthermore relates to the articles or semi-finished products made of plastics material and/or rubber which are reinforced by such a multi-layer cable, in particular to tires used in industrial vehicles, more particularly heavy-vehicle tires and their carcass reinforcement plies.
Abstract:
A steel cord (10) adapted for the reinforcement of elastomers comprises: a core steel filament (12) with a core steel filament diameter dc and coated with a polymer (14); six intermediate steel filaments (16) with an intermediate steel filament diameter di smaller than or equal to the core steel filament diameter dc; these intermediate steel filaments (16) are twisted around the core steel filament (12); ten or eleven outer steel filaments (18) with an outer steel filament diameter do smaller than or equal to the intermediate steel filament diameter dl; these outer steel filaments (18) are twisted around the intermediate steel filaments (16), the outer steel filaments (18) are preformed in order to allow rubber penetration inside the core (10). The core steel filament (12), the intermediate steel filaments (16) and the outer steel filaments (18) all have a tensile strength at least 2600 MPa. The cord (10) has an outer diameter D according to following formula: D≦dc+2×di+2×do+0.1 wherein all diameters are expressed in millimeter (mm).
Abstract:
A PC strand is coated with rust inhibitive material of thermoplastic resin so as to wholly close spaces left around a core and peripheral wires twisted around the core, thus preventing the core and wires from rusting. The strand coated with the rust inhibitive material can be produced without being untwisted by use of an extruding machine having an auxiliary pressure head connected to a cross head.
Abstract:
Steel cables are utilized for reinforcing a wide variety of rubber articles. For instance, pneumatic tires are normally reinforced with steel tire cords. It is important for such reinforcing cables to exhibit good fatigue and corrosion resistance. It has been unexpectedly found that the fatigue and corrosion resistance of such cables can be improved by incorporating syndiotactic-1,2-polybutadiene into the interstices between the steel filaments in such cables. This invention more specifically relates to a cable for reinforcing rubber articles having improved fatigue and corrosion resistance which is comprised of a plurality of steel filaments and syndiotactic-1,2-polybutadiene, wherein the syndiotactic-1,2-polybutadiene is dispersed within interstices between said steel filaments.
Abstract:
An optical well logging cable and method of fabrication is provided which utilizes the combination of optical fiber means having a proof test stress value of at least about 150,000 pounds per square inch with a surrounding and protecting arrangement of helically wound strength elements in a construction that minimizes the inelastic part of the cable elongation by minimizing the deformability of the structure within the arrangement of strength elements. This arrangement of strength elements includes two torque balancing layers wound in opposite helical directions. It is a feature of this invention that the construction has such a low permanent radial contraction under repeated loading to about 90% of the design breaking strength of the cable that its permanent elongation is no greater than about 0.4% and preferably 0.25% or less.
Abstract:
A corrosion resistant rope in which the individual strands are sealed with a plastic foam impregnant and surrounded with a dense unfoamed plastic material is made by applying a foamable plastic to the individual wires of a series of wire strands, or, alternatively, to the individual strands as a whole, and closing the strands into a rope in a closing die while passing a nonfoamable plastic material into the closing die. Sealed plastic foam impregnated wire strands can be made in the same manner by passing nonfoamable plastic material into the stranding die during fabrication of the strand.
Abstract:
Provided is an elastomer reinforcement cord with improved rust inhibition. An elastomer reinforcement cord (10) includes metal filaments and a polymer material. The elastomer reinforcement cord (10) has a multi-strand structure which includes: at least one core strand (21) formed by twisting plural metal filaments (1a) and (1b) together; and two or more sheath strands (22) each formed by twisting plural metal filaments (11a) and (11b) together, and in which the sheath strands are twisted together around the core strand. In a region surrounded by a line connecting the centers of the metal filaments constituting the outermost sheath layer of the core strand at a cross-section in a direction orthogonal to an axial direction after vulcanization of the core strand, when a region occupied by other than the metal filaments is defined as a gap region, a filling rate, which is a ratio of the area of the polymer material with respect to the gap region, is 52% to 120%.
Abstract:
A rubber-reinforcing steel cord embedded in a rubber product has a stranded structure including a core strand, and a plurality of sheath strands intertwined around an outer circumferential surface of the core strand; wherein a lubricant is provided between wires that constitute the core strand.