Abstract:
A rope system (10, 20) comprising a splice structure (12, 22) with an intact portion (23) comprising at least 8 intact strands (32, 34), and a disassembled portion (26) comprising at least 4 loose strands (30), wherein the intact portion (23) is a braid of at least 4 S oriented (32) and at least 4 Z oriented intact strands (34), wherein at least one loose strand (30) of the disassembled portion (26) passes under and over intact strands (32, 34) of the intact portion (23), and at least one loose strand (30) passes under at least one X-tuck (38) of intact strands (32, 34). By this means the splice length can be minimized resp. slippage of the splice at high loads can be avoided.
Abstract:
A woven rope an inner portion comprising a plurality of multifilament fibers in the length direction of the woven rope and a jacket portion covering the inner portion. The jacket portion contains a plurality of monofilament fibers in the length direction of the woven rope and at least one multifilament fiber in the circumferential direction interwoven with the monofilament fibers in the length direction of the jacket portion. The monofilament fibers of the jacket portion form the majority of the outer surface of the woven rope.
Abstract:
A method is provided for forming a high strength synthetic rope useful for towing warps, trawler warps, yachting ropes, mooring lines, anchor lines, oil derrick anchoring lines, seismic lines, seismic lines and any other uses for rope, cable or chain.
Abstract:
The present invention aims to provide a polypropylene fiber (PP fiber) excellent in strength, heat resistance, and water-absorption properties, a method of producing the same, and a hydraulic composition, a rope, a sheet-shaped fiber structure, and a composite material with an organic polymer each using the PP fiber. The present invention provides: a PP fiber having a fiber having a fiber strength of 7 cN/dtex or more and having either or both of (i) DSC properties such that the endothermic peak shape by DSC is a single shape having a half width of 10° C. or lower and the melt enthalpy change (AH) is 125 J/ g and (ii) irregular properties such that the single fiber fineness is 0.i to 3 dtex and irregularities are formed on the surface.
Abstract:
The present invention aims to provide a polypropylene fiber (PP fiber) excellent in strength, heat resistance, and water-absorption properties, a method of producing the same, and a hydraulic composition, a rope, a sheet-shaped fiber structure, and a composite material with an organic polymer each using the PP fiber. The present invention provides: a PP fiber having a fiber strength of 7 cN/dtex or more and having either or both of (i) DSC properties such that the endothermic peak shape by DSC is a single shape having a half width of 10° C. or lower and the melt enthalpy change (AH) is 125 J/g and (ii) irregular properties such that the single fiber fineness is 0.1 to 3 dtex and irregularities are formed on the surface, the irregularities having an average interval of 6.5 to 20 μm and an average height of 0.35 to 1 μm as a result of alternate presence of a protruded portion having a large diameter and a non-protruded portion having a small diameter along its fiber axis; a method of producing the PP fiber by pre-drawing an undrawn PP fiber having an IPF of 94% or more at 120 to 150° C. at a drawing magnification of 3 to 10 times, and then post-drawing the resultant at 170 to 190° C. and a drawing magnification of 1.2 to 3.0 times under the conditions of a deformation rate of 1.5 to 15 times/min and a draw tension of 1.0 to 2.5 cN/dtex; and a hydraulic composition, a rope, a sheet-shaped fiber structure, and a composite material with an organic polymer each using the PP fiber.
Abstract:
A rope structure comprising a plurality of rope subcomponents, a plurality of bundles combined to form the rope subcomponents, a plurality of first yarns and a plurality of second yarns combined to form the bundles. In one embodiment, the first yarns have a tenacity of approximately 25-45 gpd and the second yarns have a tenacity of approximately 6-22 gpd. In another embodiment, the first yarns have a breaking elongation of approximately 2%-5% and the second yarns have a breaking elongation of approximately 2%-12%.
Abstract:
The invention comprises a lift belt having a ribbed profile on a pulley engaging surface. The lift belt also comprises steel tensile cords within an elastomeric body. The ribbed profile engages a ribbed profile on a pulley. The lift belt exhibits increased load lifting capacity due to the increased surface area of the ribs as compared to a flat belt. The belt also comprises conductive tensile cords having a resistance. A change in resistance is used for measuring a belt condition as well as a belt load.
Abstract:
A reinforcement for a building works structure comprising an assembly of solid wires. The wires are mutually parallel to form a bundle and the reinforcement comprises a sheath made of plastic material enclosing the bundle and providing it with cohesion.