Abstract:
An outboard motor includes a cooling water passage including at least a portion disposed at a periphery of a catalyst and that guides cooling water that cools an exhaust passage, a vent hole disposed higher than the catalyst and that connects the interior of the cooling water passage to the exterior of the cooling water passage, and a restriction valve that allows a fluid to flow from the interior of the cooling water passage to the exterior of the cooling water passage via the vent hole and that restricts the flow of the fluid from the exterior of the cooling water passage to the interior of the cooling water passage via the vent hole.
Abstract:
A vertical scrubber (1) for exhaust gas from a marine vessel is described. An exhaust gas tube (2) is substantially coaxially arranged through the bottom of a lower scrubbing chamber (3) and is released though an exhaust gas outlet (20) being coaxially arranged through the top of an upper scrubbing chamber (13). A lower scrubbing chamber deflection body (4) is arranged above the opening of the exhaust gas tube (2) for redirecting the exhaust gas towards the walls of the scrubber and create turbulent gas flow, where one or more lower chamber water injector(s) (6, 6′) is (are) arranged above the lower scrubbing chamber deflection body (4), to introduce scrubbing water, and where a lower chamber exhaust gas outlet (12) is arranged at the top of the lower scrubbing chamber (3) as a coaxial constriction, for withdrawing the partly scrubbed exhaust gas from the first scrubbing chamber and introducing the gas into the upper scrubbing chamber (13).
Abstract:
A heat exchanger (28) has a first inlet (29) and a first outlet (30), which are fluidically connected with one another via a first path (31) carrying for a first medium to be cooled. A second inlet (32) and a second outlet (33) are fluidically connected with one another via a second path (34) carrying a second medium. A third inlet (35) and a third outlet (36) are fluidically connected with one another via a third path (37) carrying a third medium. The first path (31) is coupled with the second path (34) and with the third path (37) in a heat-transferring manner and in such as way that the media are separated. The heat-transferring coupling between the first path and the second path takes place upstream of the heat-transferring coupling between the first path and the third path relative to the direction of flow of the first medium.
Abstract:
The present invention relates to an exhaust-gas heat exchanger for a motor vehicle, having an encircling heat exchanger duct with a bypass pipe situated at the inside, a control flap being provided for conducting an exhaust-gas flow through the heat exchanger duct or through the bypass pipe, said exhaust-gas heat exchanger being characterized in that the control flap has an opening with a pipe stub-like section, the pipe stub-like section being in flow-conducting contact with an inlet opening of the bypass pipe in a bypass position, and the control flap being rotatable from a bypass position into a transfer position, in which the inlet is closed.
Abstract:
An exhaust system component (5) is provided for an exhaust system (1) of an internal combustion engine, especially of a motor vehicle, with an inner shell (6), which defines an exhaust-gas-guiding inner area (7), with an outer shell (8), which is arranged on an outer side of the inner shell (6) turned away from the inner area (7), with a cavity formed between inner shell (6) and outer shell (8), and with heat insulation (10) arranged in the cavity (9). The heat insulation of the component (5) includes insulation (10) having at least one microporous molding (molded body) (11).
Abstract:
A heat exchanger (7) for an exhaust system (5) of an internal combustion engine (1), includes a heating tube (16) for carrying hot exhaust gas and a cooling tube (17) for carrying a liquid cooling agent. A thermoelectric generator (13) generates an electric voltage from a temperature difference and is arranged with the adjacent tubes in a stacking direction (18) to form a stack (21). A support tube (28) is supported in the stacking direction on wall sections (29) of the respective tube (16, 17), which wall sections mutually face each other, and is arranged in the respective heating tube (16) and/or cooling tube (17). Increased energy efficiency is achieved if at least two support tubes (28), which differ from one another by tube length and/or tube end (30) and/or by tube cross sections, are arranged in the respective tube (16, 17) at right angles to a longitudinal direction (31).
Abstract:
Disclosed is an exhaust manifold that comprises an exhaust gas passage, an EGR passage, and a coolant passage. The exhaust gas passage extends fluidly between an exhaust gas inlet and an exhaust gas outlet positioned downstream thereof. The EGR passage extends fluidly between an EGR inlet and an EGR outlet positioned downstream thereof. The EGR inlet is defined by the exhaust gas passage. A coolant passage extends fluidly between a coolant inlet and a coolant outlet positioned downstream thereof. The coolant passage overlaps the exhaust gas passage and the EGR passage. The exhaust gas passage is configured to cool the exhaust gas, and EGR passage is configured to cool the recirculated portion of the exhaust gas.
Abstract:
In a stratification operation, O2 is injected from an oxygen injector during valve opening of an intake valve. Therefore, the injected O2 flows into a combustion chamber immediately after the injection, and forms a layer having a constant spread in the combustion chamber. Meanwhile, the working gas in the combustion chamber forms such a layer as to cover the O2 layer on a wall surface of the combustion chamber in conjunction with formation of the O2 layer. In other words, in the combustion chamber, an inner layer with a high O2 concentration and an outer layer with a high working gas concentration are respectively formed.
Abstract:
A vessel propulsion apparatus includes an exhaust passage guiding an exhaust, discharged from combustion chambers into an exhaust collecting passage, to a catalyst housed in a catalyst housing passage, and a cooling water passage guiding cooling water. The cooling water passage includes an upstream water passage, guiding the cooling water taken into the interior of the vessel propulsion apparatus by a water pump, and a first and second parallel water passage connected in series to the upstream water passage and connected in parallel to each other. The cooling water passage supplies the cooling water from the upstream water passage to each of the first and second parallel water passages to cool the catalyst housing passage by the first parallel water passage disposed along the catalyst housing passage and cool the exhaust collecting passage by the second parallel water passage disposed along the exhaust collecting passage.
Abstract:
The present invention relates to an internal combustion engine and, more particularly, an internal combustion engine having a new and novel system for improving the efficiency of the engine. In a preferred embodiment the system comprises an expander effective for receiving condensed engine exhaust and placing said exhaust in contact with copper or a copper alloy and for transforming the exhaust into vapor for transfer into the combustion chamber of the engine. In a preferred embodiment the system further comprises a condenser means for cooling the exhaust exiting the engine sufficiently to condense any water vapor and/or fuel vapor to form a liquid mixture or water and fuel, collecting and storing the liquid mixture, and directing the stored liquid mixture to the expander.