Abstract:
The described invention relates to an integrated LNG re-gasification apparatus suitable for broad use and effective utilization of LNG containers comprising: a) modular storage tank holding structures adapted for storing and accessing LNG containerized in one or more storage tanks; b) a heat exchange re-gasification chamber adapted for converting said LNG to natural gas using a working fluid of higher temperature than the LNG; c) fluid transfer means for transporting the LNG from said storage tanks to the at least one heat exchange re-gasification chamber; d) at least one working fluid holding tank; e) fluid transfer means for transporting the working fluid from said holding tank to the at least one heat exchange re-gasification chamber; f) fluid transfer means for transporting a cooled working fluid, to one or more ancillary refrigeration or air conditioning units.
Abstract:
A hydrogen station includes gas storage equipment for storing hydrogen, a dispenser for charging hydrogen gas supplied from the gas storage equipment into a hydrogen tank of a vehicle, and a blower. When charging hydrogen, the blower blows air towards a radiator of the vehicle parked at a predetermined vehicle parking area of the hydrogen station. The current flow of the blower is adjusted in accordance with the heat load on the radiator.
Abstract:
A method for vaporizing and heating a cryogenic fluid such as a liquefied natural gas, to a desired temperature in the ambient temperature range. The method comprises using an intermediate heat exchange fluid such as propane to heat the liquefied natural gas and to utilize the cold potential of the liquefied natural gas to produce power. The heat exchange fluid is heated by a heat source, such as warm or hot water available from an industrial process. The heat exchange fluid is pressurized and heated to form a heat exchange vapor. The heat exchange vapor is split into multiple streams that exchange heat with the cryogenic fluid in series fashion so that the cryogenic fluid is vaporized and heated to the desired temperature in stages using a common heat exchange fluid and heat source.
Abstract:
A cryogenic fluid storage/processing system which includes a tank for storing the cryogenic fluid, and a containment wall surrounding the tank and defining an impoundment area. The system further includes a vaporizer for regasification of the cryogenic fluid. Piping is discharges the vaporizer heating medium into the impoundment area, and/or routes it beneath the tank to heat the ground beneath the tank. Further, the system provides for all liquid hydrocarbons to be contained within the impoundment area with the pumps inside and the vaporizers mounted on the containment walls.
Abstract:
A gas supply arrangement of a marine vessel being adapted to carry liquefied gas in its cargo tank having an ullage space section and a liquid phase section, which arrangement utilises the gas as fuel to provide power for the vessel, the arrangement comprising a first gas supply line provided for processing the natural boil-off gas formed in the cargo tank, a second gas supply line which connects the cargo tank and the gas main supply line and which is provided with at least a pump for raising the pressure of the liquid gas and for pumping it forward. The second gas supply line is provided with a gas reservoir having an ullage space section and liquid phase section, and that the arrangement is provided with a first duct section of the second gas supply line connecting the liquid phase section of the cargo tank and the liquid phase section of the gas reservoir, and being provided with the pump, and that the arrangement is additionally provided with a return line connecting the liquid phase section of the reservoir and the cargo tank being provided with a control valve for controllable returning liquid gas back into the cargo tank.
Abstract:
LNG vapor from an LNG storage vessel is absorbed using C3 and heavier components provided by a fractionator that receives a mixture of LNG vapors and the C3 and heavier components as fractionator feed. In such configurations, refrigeration content of the LNG liquid from the LNG storage vessel is advantageously used to condense the LNG vapor after separation. Where desired, a portion of the LNG liquid may also be used as fractionator feed to produce LPG as a bottom product.
Abstract:
A pressure tank includes a liner separated into a cap and a main body. A shell covers the outer surface of the liner. The shell is formed of a fiber reinforced plastic. A heat exchanger is arranged in the liner. A header is connected to the heat exchanger. The heat exchanger is supported on the liner by fastening the header to the cap or the main body.
Abstract:
The submarine is equipped with a fluid gas pressure container, in particular for storing liquid oxygen. The liquid gas pressure container is arranged within the pressure hull of the submarine and is surrounded by an outer pressure container which is likewise stored within the pressure hull of the submarine. A device is provided which on exceeding a predefined pressure within one pressure container leads fluid from the pressure container out of the pressure hull.
Abstract:
This gas supply apparatus supplies a gas by vaporizing a liquefied gas filled in a gas container. This apparatus includes an installation stand having an upper surface on which the gas container is placed; at least one nozzle which discharges a heating medium towards a bottom surface of the gas container and is provided in a hole formed in the installation stand; and a heating medium discharge path which discharges the heating medium from a space between the bottom surface of the gas container and the upper surface of the installation stand.
Abstract:
The Dual Gas Facility stores natural gas in one or more man-made salt caverns typically located in a single salt dome or in bedded salt. The Dual Gas Facility can access different sources of natural gas. A first gas source is from a natural gas pipeline(s) and a second gas source is from LNG. Depending on economic conditions, supply conditions and other factors, the Dual Gas Facility can receive gas from the natural gas pipeline(s) and/or from LNG to fill the salt caverns. Of course, the LNG must be warmed before being stored in a salt cavern.