Abstract:
Photography is employed to objectively quantify opacity of fluids such as smoke plumes and dust via a method termed the Digital Optical Method (DOM™). The DOM™ quantifies the ratio of radiance values by means of a camera response curve obtained using objective measures. The radiance ratios are then used to calculate opacity of target fluids such as smoke plumes. The DOM™ quantifies opacity during both daytime and nighttime conditions with a much broader range of subject types, e.g., white, gray and black smoke plumes, and environmental conditions, e.g., non-blue-sky, building, and mountain backgrounds, than existing systems while not requiring human interpretation for any application. In one embodiment, the DOM™ quantifies opacity from digital photos using a pre-designed algorithm and an inexpensive digital camera. Very little training is needed to implement the DOM™ and it yields consistent objective quantitative results, while providing a permanent photographic record easily digitally archived.
Abstract translation:摄影用于通过称为数字光学方法(DOM)的方法客观地量化诸如烟雾和灰尘的流体的不透明度。 DOM TM通过使用客观测量获得的相机响应曲线来量化辐射值的比率。 然后使用辐射比来计算目标流体(如烟羽)的不透明度。 DOM(TM)在白天和夜间条件下量化不透明度,具有更广泛的主题类型,例如白色,灰色和黑色烟雾羽毛以及环境条件,例如非蓝天,建筑和山脉背景, 比现有系统,而不需要任何应用程序的人为解释。 在一个实施例中,DOM TM使用预先设计的算法和便宜的数码相机来量化来自数字照片的不透明度。 实施DOM(TM)需要很少的培训,并且可以产生一致的客观量化结果,同时提供易于数字归档的永久性照片记录。
Abstract:
The present invention relates to a method for the assessment of quantity and quality parameters of biological particles in a liquid analyte material. The method comprises applying a volume of a liquid sample to an exposing domain from which exposing domain electromagnetic signals from the sample in the domain can pass to the exterior, and exposing, onto an array of active detection elements such as CCD-elements, a spatial representation of electromagnetic signals having passed from the domain, the representation being detectable as an intensity by individual active detection elements, under conditions permitting processing of the intensities detected by the array of detection elements during the exposure in such a manner that representations of electromagnetic signals from the biological particles are identified as distinct from representations of electromagnetic signals from background signals. The size of the volume of the liquid sample is sufficiently large to permit the assessment of the quantity and quality parameters to fulfill a predetermined requirement to the statistical quality of the assessment based on substantially one exposure.
Abstract:
A linearizing correction unit (104) carries out a linearizing correction process on the output of an image sensor (8) based upon linearizing correction data stored in a linearizing correction data holding unit (102), and a light-irregularity correction unit (108) carries out a light-irregularity correction process on the image sensor output that has been subjected to the linearizing correction process based upon light-irregularity correction data stored in a light-irregularity correction data holding unit (106). A refection factor calculation unit (110) calculates an integral value of the in-plane reflection factor of a test piece by using the output that has been subjected to the linearizing correction and light-irregularity correction with respect to pixel outputs of the image sensor (8) obtained when the test piece having in-plane density irregularities is measured. A quantifying unit (114) applies calibration curve data of a calibration-curve-data holding unit (112) to the integrated reflection factor obtained by the reflection factor calculation unit so that a sample density of the test piece is calculated.
Abstract:
The present invention relates to a method for the assessment of quantity and quality parameters of biological particles in a liquid analyte material. The method comprises applying a volume of a liquid sample to an exposing domain from which exposing domain electromagnetic signals from the sample in the domain can pass to the exterior, and exposing, onto an array of active detection elements such as CCD-elements, a spatial representation of electromagnetic signals having passed from the domain, the representation being detectable as an intensity by individual active detection elements, under conditions permitting processing of the intensities detected by the array of detection elements during the exposure in such a manner that representations of electromagnetic signals from the biological particles are identified as distinct from representations of electromagnetic signals from background signals. The size of the volume of the liquid sample is sufficiently large to permit the assessment of the quantity and quality parameters to fulfill a predetermined requirement to the statistical quality of the assessment based on substantially one exposure.
Abstract:
The invention relates to an arrangement and a method for the analysis of body fluids (21), whereby an image recording device (30) is arranged in a low-reflection, preferably zero-reflection chamber (16), provided with an illumination device (45) and connected to an electronic image analyzer. The image recording device (30) is focused on a container (20), containing the body fluid (21) in an analysis position (22), in order to take at least one image of the body fluid (21), analyzed by means of an image analysis software which determines the quality of the body fluid (21).
Abstract:
An optical scanner includes a light source (39) which directs a beam of light at a web of moving paper whereby the beam of light is transmitted through the web of moving paper. The transmitted beam (43) is split by a beam splitter (19) to provide a first split beam (44) travelling in a machine direction and a second split beam (45) travelling in a cross-machine direction. The split beams are received by charge-coupled device linear arrays (15, 19) which provide analog signals having magnitudes proportional to the magnitude of light intensity of the split beams. The analog signals are fed to analog-to-digital converters which provide digital data at the output. The digital data is then used to compute paper formation descriptors including paper mass variation, floc size statistics and histogram, Fourier power spectra and paper anisotropy.
Abstract:
An aggregation pattern detecting apparatus includes a microplate having a plurality of reactive vessels in which aggregation patterns are formed, a light source arranged above the microplate, and a light sensor arrangement positioned below the microplate. The microplate is removably fastened to a main body, and a movable frame is movably supported on the main body. The light source and light sensor arrangement are carried on the movable frame for movement therewith. A driving mechanism effects movement of the movable frame and is controlled by a main control section. A reference plate is provided separately from the microplate, and has a plurality of through holes therein which correspond to the reactive vessels of the microplate. The reference plate is removably fastenable to the main body at the normal operative position of the microplate. With the reference plate in this position, the distance from a starting point of the driving mechanism to the through holes of the reference plate is measured and stored in the main control section. Based on these stored distances, the main control section determines appropriate operational positions for the light sensor.
Abstract:
An apparatus for discriminating a particle aggregation pattern includes a memory circuit for storing line data output from a CCD line sensor, which line data represents the aggregation pattern. A maximum value is obtained for each set of line data, and thereafter a further maximum value is obtained from the afore-mentioned previously obtained maximum values. A threshold value is determined on the basis of the further maximum value, and is then applied to the line data in order to extract therefrom information regarding the shape and area of the aggregation pattern. In another embodiment, the threshold value is determined on the basis of minimum values obtained from the line data.
Abstract:
A method of making a two-dimensional measurement of the concentration of a biological macromolecule aqueous solution and an apparatus for carrying out this method are disclosed. By charging the biological macromolecule aqueous solution and an aqueous crystallizing agent solution into a crystallizing cell, irradiating the crystallizing cell with an ultraviolet light from an ultraviolet light source, two-dimensionally scanning the ultraviolet light transmitted through the crystallizing cell by a linear image sensor to detect the quantity of the transmitted light, and carrying out a conversion of the detected quantity of the transmitted light to the protein concentration, the process of a crystallization of the biological macromolecule from biological macromolecule aqueous solution can be easily and accurately twodimensionally measured.
Abstract:
A closed flow cell having a cavity with a flexible diaphragm at either end of a flow tube. A sample having particles or biological cells suspended in a fluid is placed within either cavity. Movement of the diaphragm forces the fluid to flow through the flow tube back and forth between the two cavities. Detectors are positioned adjacent the flow tube. A light source, typically a laser, illuminates the flow tube. Scattered light from the light source is detected by the detectors. Various properties of the particle are thereby determined.