Abstract:
An electron device incorporating a microchannel plate as a secondary emission electron source which in addition to the primary current provided by an electron emitter, such as a thermionic emitter, will provide high gains. By impressing the proper voltages thereon, the entrance and exit surfaces of the microchannel plate serve respectively as equivalents to the control grid and screen grid in a conventional type tube.
Abstract:
A well-logging tool may include a sonde housing and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a uni-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
A well-logging tool may include a sonde housing, and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a bi-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
Electron multipliers and techniques for manufacturing electron multipliers are provided. In one embodiment, an electron multiplier includes at least two electrodes, a plurality of electron emission tips for emitting electrons formed on one of the at least two electrodes, and at least one porous structure having a plurality of pores for multiplying the electrons emitted from the plurality of electron emission tips. The porous structure includes a metal core and a layer of insulator material coated on an outer surface of the metal core, and is disposed between the at least two electrodes.
Abstract:
An electron gun. The electron gun includes an RF cavity having a first side with an emitting surface and a second side with a transmitting and emitting section. The gun also includes a mechanism for producing an oscillating force which encompasses the emitting surface and the section so electrons are directed between the emitting surface and the section to contact the emitting surface and generate additional electrons and to contact the section to generate additional electrons or escape the cavity through the section. A method for producing electrons.
Abstract:
A field emission device (FED) includes a top substrate having an anode electrode and a phosphor layer, a lower substrate, at least one cathode electrode having an opening-pattern with at least one opening, an insulating layer located on the cathode electrode, a gate layer located on the insulating layer, and an electron emitter located in the opening of the cathode electrode. The electron emitter is adjacent to the cathode electrode and is electrically connected therewith. The cathode electrode having the opening-pattern is located on a bottom panel. Through the structure illustrated above, uniformity of emitting electron density can be improved and brightness and contrast of color for the FED can be enhanced.
Abstract:
Generating and frequency tuning of modulated high current electron beams and a specific efficient, high current, frequency-tunable device for generating intense radio frequency (RF), microwave electromagnetic fields in a rectangular waveguide. Current multiplication of a modulated seed electron beam is created by an energetic electron beam impacting a thin foil surface. The transmissive-electron-multiplier foils also mitigate both space charge expansion and improve beam propagation effects, by shorting of the radially directed electric field at the axial location of the foil(s). Foil thinness and intensity of the exit fields provide for a multiplication process occurring in a fraction of an RF period. Also included are both a self-excited microwave generator and an amplifier, using a temporally modulated laser to generate a modulated seed electron beam that is amplified. Methods to tune the oscillator are described that allow tunability over a full waveguide band.
Abstract:
A display device has a display screen for displaying image information, and cathode means comprising an emitter material for emitting electrons. The emitted electrons are collected by an electron concentrator which redistributes the electrons in a homogenous electron beam (EB). The emitter material is arranged on a first surface excluding a first impact area on which positive ions land that pass through the electron concentrator. Therefore, substantially no emitter material is provided at the first impact area, so that damage inflicted on the cathode means by the positive ions is reduced. Preferably, the display device has a pumping chamber between the cathode means and a back plate, for removing residual gases from the display device.
Abstract:
The present invention pertains to an electron gun that generates multiple electron bunches and the application of this gun to produce rf energy. The electron gun comprises an rf input cavity having a first side with multiple emitting surfaces and a second side with multiple transmitting and emitting sections. The gun is also comprised of a mechanism for producing a rotating and oscillating force which encompasses the multiple emitting surfaces and the multiple sections so electrons are directed between the multiple emitting surfaces and the multiple sections to contact the multiple emitting surfaces and generate additional electrons and to contact the multiple sections to generate additional electrons or escape the cavity through the multiple sections. The multiple sections preferably isolates the cavity from external forces outside and adjacent the cavity. The multiple sections preferably include multiple transmitting and emitting grids. The multiple grids can be of an annular shape, or of a circular shape, or of a rhombohedron shape. The mechanism preferably includes a mechanism for producing a rotating and oscillating electric field that provides the force and which has a radial component that prevents the electrons from straying out of the region between the multiple grids and the multiple emitting surfaces. Additionally, the gun includes a mechanism for producing a magnetic field to force the electrons between the multiple grids and the multiple emitting surfaces. The present invention pertains to a method for producing multiple electron bunches. The method comprises the steps of moving at least a first electron in a first direction. Next there is the step of striking a first area with the first electron. Then there is the step of producing additional electrons at the first area due to the first electron. Next there is the step of moving electrons from the first area to a second area and transmitting electrons through the second area and creating more electrons due to electrons from the first area striking the second area. These newly created electrons from the second area then strike the first area, creating even more electrons in a recursive, repetitive manner between the first and second areas. An apparatus is provided for accelerating electron bunches to high energy. A means is given for producing an axial magnetic field in the axial direction so as to guide electrons into an output cavity for generating rf energy from the electrons passing therethrough. An output cavity is given for generating rf energy when multiple electron bunches pass through it. Finally, a collector is provided for electrons which have given up most of their energy to the output cavity. The present invention pertains to an electron gun. The electron gun comprises an rf cavity having a first side with multiple non-simultaneous emitting surfaces and a second side with multiple transmitting and emitting sections. The electron gun also comprises a mechanism for producing a rotating and oscillating force which encompasses the multiple emitting surfaces and the multiple sections so electrons are directed between the multiple emitting surfaces and the multiple sections to contact the multiple emitting surfaces and generate additional electrons and to contact the multiple sections to generate additional electrons or escape the cavity through the multiple sections. The present invention pertains to an apparatus for generating rf energy. The apparatus comprises a mechanism focusing non-simultaneous multiple electron bunches. The apparatus also comprises an output cavity which receives non-simultaneous multiple electron bunches and produces rf energy as the non-simultaneous multiple electron bunches pass through it. The present invention pertains to a method for producing electrons. The method comprises the steps of moving at least a first electron in a first direction at a first time. Then there is the step of moving at least a second electron in the first direction at a second time. Next, there is the step of striking a first area with the first electron. Next, there is the step of producing additional electrons at the first area due to the first electron. Then, there is the step of moving electrons from the first area to a second area. Next, there is the step of transmitting electrons to the second area and creating more electrons due to electrons from the first area striking the second area. Then, there is the step of striking a third area with the second electron. Next, there is the step of producing additional electrons at the third area due to the second electron. Next, there is the step of moving electrons from the third area to a fourth area. Then, there is the step of transmitting electrons to the fourth area and creating more electrons due to electrons from the third area striking the fourth area.
Abstract:
An electron gun comprises a photoemissive source, which is excited by a source of light such as a pulsed laser. This electron emission is amplified by a secondary emission multiplication system comprising a plurality of AC or DC biased dynodes. In the former case the gun envelope forms a resonator cavity.