Abstract:
A multi-channel photomultiplier tube in which light radiation from distinct sources passes through an entrance window to a photo-cathode, the window being divided into parts so that light from a source passes through a respective part to an associated part of the photo-cathode, the division of the window into parts constraining the light from incidence upon other parts of the photo-cathode.
Abstract:
A night vision system, a microchannel plate (MCP), and a planetary deposition system and methodology are provided for selectively depositing an electrode contact metal on one side of MCP channel openings. One or more MCPs can be releasably secured to a face of a platter that rotates about its central platter axis. The rotating platter can be tilted on a rotating ring fixture surrounding an evaporative source of contact metal. Therefore, the rotating platter further rotates so that it orbits around the evaporative source of contact metal. A mask with a variable size mask opening is arranged between the rotating platter and the evaporative source. While the mask orbits around the evaporative source with the rotating platter, the mask does not rotate along its own axis as does the rotating platter.
Abstract:
A metasurface element includes a support body and a metasurface formed on a surface of the support body. The metasurface includes a metal pattern that is disposed to emit an electron in response to incidence of an electromagnetic wave, and a metal layer that contains an alkali metal and is formed on the metal pattern. The metal layer extends beyond the metal pattern to reach a region on the surface of the support body, the region being not formed with the metal pattern.
Abstract:
A light detector includes a cooling device between a photomultiplier tube (PMT) device and a heat sink. A thermally conductive shield encloses the PMT device and the cooling device and is in thermal contact with the heat sink such that the heat sink transfers heat to the shield. The light detector may be included in sample analyzing apparatus configured for making optical measurements of a sample.
Abstract:
As a result of the size of the detector elements thereof, optoelectronic detectors such as photoelectron multipliers comprising a light-entry region sealed by a protective disc can only be used with much outlay for recording an image of a diffraction-limited focus volume in a two-dimensional spatially resolved manner, even if the image is significantly magnified in relation to the focus volume. The novel detector is intended to enable the spatially resolved detection of point spread functions with little outlay and high accuracy. 2.2 For this purpose, a body made of glass or glass ceramics comprising an opening, in which one end of an optical fibre is arranged, is cemented to the cover disc in such a way that the end of the optical fibre faces the cover disc and the optical axis thereof intersects the light-entry region. Thus, the relative position of optical fibre and entry region can be provided permanently with high accuracy. Preferably, the detector includes a plurality of detection channels, in particular 32 channels, comprising a respective light-entry region and the body includes a plurality of openings comprising a respective optical fibre. 2.3 Fluorescent microscopy.
Abstract:
In a micro-channel plate, an electron emission film and an ion barrier film formed on a substrate are integrally formed by the same film formation step. In this structure, the electron emission film and the ion barrier film are made as continuous and firm films and the ion barrier film can be made thinner. Since the ion barrier film is formed on the back side of an organic film, the organic film is exposed during removal of the organic film. This prevents the organic film from remaining and thus suppresses degradation of performance of the ion barrier film due to the residual organic film, so as to suppress ion feedback from the micro-channel plate and achieve a sufficient improvement in life characteristics of an image intensifier.
Abstract:
A detector device is configured to receive light and generate electrical signals. The detector device includes a housing, a detector disposed in the housing and a cooling component disposed in the housing. The cooling component is at least one of: positioned so as to have a light path extend through the cooling component, where the light path is defined by light that is received for detection; designed so as to include a thermally conductive, electrically insulating intermediate element; and disposed, in direct contact a light sensor of the detector and/or a substrate bearing the light sensor.