摘要:
There is disclosed a method of fabricating BiCMOS semiconductor devices. External metal lines are not used for connecting the NPN bipolar device and NMOS device, or NPN bipolar device and PMOS device. In this case, the collector and base of the bipolar device are respectively in common with the drain and source of the CMOS. The bipolar transistor is in common with the bulk region of the CMOS, so that the diffusion layer is commonly used in the NPN-PMOS pair, and the diffusion layers of the connecting part are connected together in the NPN-PMOS pair. A metal line is connected to the junction of the diffusion layers, thus decreasing the connecting area of the metal line. Hence, the integrability of the chip is increased, and the metal connection causes a reduction of the RC delay time, thus improving the operational speed.
摘要:
A BiCMOS structure and a method for making the same is disclosed, where the dielectric layer between the emitter electrode and the base region is formed of a deposited dielectric. After definition of the bipolar and MOS moat regions, a layer of polysilicon is deposited thereover, and removed from the bipolar region. The base implant is performed either prior to or after the etch of the polysilicon layer. A layer of TEOS oxide is formed thereover and is etched to remain in portions of the bipolar region, with an emitter contact formed therethrough and a portion of the bipolar region exposed at which the extrinsic base is formed. An alternative embodiment of the invention includes scaling the emitter contact by forming sidewall oxide filaments therewithin. A second layer of polysilicon is disposed thereover to form the emitter electrode, and to merge with the first layer to form the gates of the MOS transistors. Subsequent patterning and etching of the polysilicon, followed by sidewall filament formation and source/drain doping, is performed to complete the structure.
摘要:
A method of making a semiconductor integrated circuit provided with an isolating region constituted of an upper and lower isolating regions, and integrated circuit element regions is disclosed, wherein: the lower isolating region is diffused upward to a depth of a little more than half the thickness of an epitaxial layer to link with the upper isolating region prior to a doping of the upper isolating region; the doping of the lower isolating region and integrated circuit element regions, is implemented by means of ion implantation through a resist film which is capable of blocking ions implanted and in which specified doping windows have been formed in advance, and a SiO.sub.2 film is used as a reference mask in an ion implanting step, and the respective borders of the upper isolating region and the specified regions of the circuit elements is determined by self-alignment. The method has advantages that the upper isolating region can be prepared by heat-treatment for relatively short time, reducing lateral diffusion and the occupied area thereof, and slippage by masking is remarkably reduced, providing a semiconductor integrated circuit with high density.
摘要:
First, N-type channel stoppers are formed in an element formation region of a P-channel MOS transistor and in an element isolation region of the P-channel MOS transistor, of a CMOS transistor. After forming a field oxide film, an N well is formed in the element formation region of the P-channel MOS transistor. In spite of the fact that the dose of ions used for the formation of an N-type channel stopper is smaller than the dose of ions used for the formation of an N well, the surface concentration of the N-type impurity of the N-type channel stopper is higher than that of the N well. The N-type impurity concentration in the portion where the N-type channel stopper and the N well are brought into contact, becomes uniform. The variability in the threshold voltage of the P-channel MOS transistor, the threshold voltage of the P-channel parasitic MOS transistor, the junction breakdown voltage of the P.sup.+ diffused layer and the junction capacitance of the P.sup.+ diffused layer is reduced, so that the device obtained is suited for the submicron process.
摘要:
A vertical NPN transistor is fabricated in a silicon integrated circuit substrate growing an N-type epitaxial layer, forming a preliminary P-type base region in the surface of the epitaxial layer, covering the surface with a protective glass layer, selectively etching a hole in the glass layer at an emitter-designated place over the preliminary base region, depositing N-type impurities through the hole into the silicon surface to become the emitter, implanting P-type impurities, of a kind that diffuse faster than the N-type impurities, through the hole into the epitaxial layer and heating to at least anneal the substrate. The hole is then filled to provide electrical contact to the emitter.
摘要:
A method of making complementary vertical bipolar transistors and complementary field effect transistors on the same substrate is described. The process includes forming buried layers in a semiconductor substrate which are spaced apart in a self-aligned manner by use of a lateral etching technique to undercut the mask used for definition of the buried layers. In the process, the collector and base contacts of the bipolar devices and the corresponding conductivity-type sources and drains of the field effect transistors are combined to minimize processing steps. The process also includes a silicided polycrystalline silicon layer used to form resistors and contact the various transistors.
摘要:
In a semiconductor IC, a vertical pnp or npn transistor of a uniform characteristic and a high breakdown voltage is made by forming, for example, a p.sup.- -collector region (39) in an n-type epitaxial region, an n-well base region (41) formed in the p.sup.- -collector region (39) and a p-emitter region (42) formed in the n-well base region (41); and furthermore, for example as shown in FIG. 9, p.sup.- -regions (40) and (49) are formed simultaneously with the p.sup.- -collector region (39) and an n-region (53) is formed simultaneously with the n-well base region (41), thereby constituting IIL of superior characteristics and a high resistance device at the same time as forming of the vertical transistor without substantial increase of manufacturing steps; and in the similar way, by combining the p.sup.- -region and n-region formed in the above-mentioned simultaneous steps with other region formed simultaneously with the forming of the vertical transistor, high h.sub.FE transistor, high speed vertical npn transistor, cross-over devices, p-channel and/or n-channel MOS transistors can be formed within limited manufacturing steps.
摘要:
In a transistor fabrication process, the use of a three-step base doping technique enables the characteristics of a vertical bipolar transistor to be controllably reproduced at highly optimal values from run to run. Insulating spacers (52A) are employed in forming a self-aligned base contact zone (58B). A shallow emitter (46) is created by outdiffusion from a patterned non-monocrystalline semiconductor layer (38A) that serves as the emitter contact. The fabrication process is compatible with the largely simultaneous manufacture of an insulated-gate field-effect transistor of the lightly doped drain type.
摘要:
This invention provides a method for fabricating a semiconductor device comprising the steps of forming buried layers on the silicon substrate; etching an epitaxial layer after said layer is grown up, the step further including the processes of etching selectively the silicon epitaxial layer of well region on which a high speed bipolar transistor is formed to be thin and keeping the silicon epitaxial layer of well region on which nMOS transistor is formed remained the same thickness as grown up; and forming a pMOS transistor, a nMOS transistor and a bipolar transistor. High efficiency and high integration is easily attained in fabricating the high speed bipolar transistor and high performance CMOS transistor on same chip and by reducing the difficulty in processing according to the method of present invention.
摘要:
Integrated semiconductor circuits with at least one bipolar transistor (17) and at least one MOS field effect transistor (18) on a chip wherein contacts from a metal interconnect level to diffused active emitter (8) and collector (5) regions of the bipolar transistor (17) as well as the gate electrode (9) of the MOS transistor are composed of a high melting point silicide, such as tantalum, tungsten, molybenum or titanium silicide, are disclosed, along with a method of producing such circuits. In addtion to achieving independence from a metallization grid and achieving low-resistance wiring, the use of the silicide, in conjunction with the high temperature stability of silicides, enables its simultaneous use as an implantation mask. The invention allows the production of bipolar/MOS components on a chip without added outlay.