Abstract:
An ion generator is disclosed. The ion generator has improved portability and ion generation efficiency. As is apparent from the above description, the ion generator according to the present invention is configured so that the discharge unit is constituted by the felts, and the piezoelectric element, not the coil type transformer, is used in the high voltage generation unit which generates high voltage. Consequently, the present invention has the effect of improving portability of the ion generator and the present invention has the effect of improving ion generation efficiency although the portability of the ion generator is improved by configuring the ion generator according to the present invention so that the discharge unit is constituted by the felts, and the piezoelectric element, not the coil type transformer, is used in the high voltage generation unit which generates high voltage.
Abstract:
Disclosed is a light emitting device package. The light emitting device includes a package body having a cavity defined by a sidewall and a bottom surface, a light emitting device disposed in the cavity, a radiator inserted into the package body and disposed below the light emitting device, and a second electrode pattern disposed around the radiator and electrically connected to the light emitting device via wire bonding. The second electrode pattern includes a first region to which a wire is bonded, and a second region connected to the first region, and a width of the first region differs from a width of the second region.
Abstract:
A lamp apparatus includes an apparatus body including a housing having a cap at one end side, and thermal conducting fins provided on an inner surface of the housing so as to extend from the one end side along the other end side thereof and project inward of the housing, a thermal radiation plate attached to the other end side of the housing in a state in which one surface side is in contact with the thermal conducting fins, a light-emitting body attached to the other surface side of the thermal radiation plate, and a lighting circuit disposed in the housing and configured to light the light-emitting body.
Abstract:
A lighting device may be provided that includes: a heat sink which includes a base and a member extending from the base; a light source module which is disposed on a lateral surface of the member; and a reflector which is disposed on the member and has a disposition recess exposing the light source module, wherein the at least two light source modules are provided and the light source module includes a terminal plate which electrically connects the at least two light source modules, and wherein the terminal plate is disposed on the reflector.
Abstract:
The invention provides an illumination apparatus (10) and a method of assembling the illumination apparatus. The illumination apparatus comprises a light source (101) having a plurality of LED arrays, wherein at least two of the plurality of LED arrays have different lumen degradations as a function of junction temperature of the respective LED arrays; and a heat dissipation unit (102) configured to be capable of dissipating heat generated by the light source, wherein the heat dissipation unit is mounted on a first surface of the light source in such a way that there is a gap between the first surface and the heat dissipation unit when the light source is not in operation, and the gap is narrowed or can be deemed to disappear when the light source reaches a preset temperature, so that the heat dissipation efficiency of the heat dissipation unit is improved.
Abstract:
The invention discloses a three dimensional LED arrangement and heat management method using a heat transfer or conduction pipe to enable rapid heat transfer from a three dimensional cluster of LEDs to a heatsink with or without active cooling, the light emitted from the three dimensional cluster not being obstructed by a heat sink arrangement such that the light beam profile generated by the light appears similar to that generated by traditional incandescent bulbs.
Abstract:
A mesh electrode adhesion structure includes: a substrate, and an opening defined in the substrate; a mesh electrode on the substrate, and a first combination groove defined in the mesh electrode; and an adhesion layer between the substrate and the mesh electrode. The mesh electrode includes: a mesh region corresponding to the opening defined in the substrate, and an adhesion region in which the first combination groove exposes the adhesion layer.
Abstract:
Components for use in vacuum electron devices are fabricated from highly oriented pyrolytic graphite (HOPG) and exhibit excellent thermal conductivity, low sputtering rates, and low ion erosion rates as compared to conventional components made from copper or molybdenum. HOPG can be reliably brazed by carefully controlling tolerances, calculating braze joint material volume, and applying appropriate compression during furnace operations. The resulting components exhibit superior thermal performance and enhanced resistance to ion erosion and pitting.
Abstract:
The present invention discloses a heatsink apparatus for use with a backlight module. The heatsink apparatus is used to dissipate heat buildup from a light source, and includes a heatsink and a backframe. The heatsink is thermally in contact with the light source. The backframe and the heatsink jointly define a ventilation shaft on a surface of the backframe. The present invention further includes a backlight module incorporated with the heatsink. With the provision of the ventilation shaft of the heatsink, the performance of the heat dissipation is increased, and the service life of the light source is therefore prolonged.
Abstract:
A cooling member for at least one semiconductor light emitting element, in particular an LED, may include a mounting cavity for accommodating at least part of a control electronics unit, whereby the cooling member is composed of multiple cooling member parts, whereby each of which cooling member parts includes part of a wall of the mounting cavity.