Abstract:
A bipolar transistor structure and process technology is described incorporating a emitter, a base, and a collector, with most of the intrinsic base adjacent the collector having a graded energy bandgap and a layer of the intrinsic base adjacent the emitter having a substantially constant energy bandgap. The invention has a smaller base transit time than a conventional graded-base-bandgap bipolar transistor.
Abstract:
A method for forming first and second linear structures of a first composition that meet at right angles, there being a gap at the point at which the structures meet. The linear structures are constructed on an etchable crystalline layer having the first composition. First and second self-aligned nanowires of a second composition are grown on this layer and used as masks for etching the layer. The self-aligned nanowires are constructed from a material that has an asymmetric lattice mismatch with respect to the crystalline layer. The gap is sufficiently small to allow one of the structures to act as the gate of a transistor and the other to form the source and drain of the transistor. The gap can be filled with electrically switchable materials thereby converting the transistor to a memory cell.
Abstract:
A bipolar transistor includes the first group of transistors 610a, the second group of transistors 610b, the third group of transistors 610c and the fourth group of transistors 610d. The groups of transistors have unit transistors with emitters, bases and collectors that are connected electrically in parallel and the number of unit transistors is different from group to group and 2, 4, 8, and 16, respectively.
Abstract:
A semiconductor structure having a textured nitride-based layer. The textured nitride-based layer can be formed above one or more crystalline nitride layers and a substrate, and can be formed into any desired pattern. The semiconductor structure can be incorporated as part of, for example, a field effect transistor, a light emitting diode, or a laser.
Abstract:
A micromachined device made of semiconductor material is formed by: a semiconductor body; an intermediate layer set on top of the semiconductor body; and a substrate, set on top of the intermediate layer. A cavity extends in the intermediate layer and is delimited laterally by bottom fixed regions, at the top by the substrate, and at the bottom by the semiconductor body. The bottom fixed regions form fixed electrodes, which extend in the intermediate layer towards the inside of the cavity. An oscillating element is formed in the substrate above the cavity and is separated from top fixed regions through trenches, which extend throughout the thickness of the substrate. The oscillating element is formed by an oscillating platform set above the cavity, and by mobile electrodes, which extend towards the top fixed regions in a staggered way with respect to the fixed electrodes. The fixed electrodes and mobile electrodes are thus comb-fingered in plan view but formed on different levels.
Abstract:
A zinc oxide (ZnO) field effect transistor exhibits large input amplitude by using a gate insulating film. A channel layer and a gate insulating film are sequentially n laminated on a substrate. A gate electrode is formed on the gate insulating film. A source electrode and a drain electrode are disposed at the both sides of the gate electrode and are electrically connected to the channel layer via openings. The channel layer is formed from n-type ZnO. The gate insulating film is made from aluminum nitride/aluminum gallium nitride (AlN/AlGaN) or magnesium zinc oxide (MgZnO), which exhibits excellent insulation characteristics, thus increasing the Schottky barrier and achieving large input amplitude. If the FET is operated in the enhancement mode, it is operable in a manner similar to a silicon metal oxide semiconductor field effect transistor (Si-MOS-type FET), resulting in the formation of an inversion layer.
Abstract:
The present invention generally relates to methods used for fabricating integrated circuits (nullICsnull), using Ruthenium (nullRunull) and its oxides and/or Iridium (nullIrnull) and its oxides as the diffusion barrier to contain and control copper (nullCunull) interconnects. The invention also covers ICs incorporating such materials in the diffusion barrier to contain and control the Cu interconnects. The present invention advantageously provides better integration and fabrication of advanced IC chips with sub-micron features.
Abstract:
A vertical bipolar transistor is described which utilizes ion implantation steps which are used to form an nMOS field effect device and a pMOS field effect device. The implantation steps form an n-well, a channel stop p-well region and emitter region which are vertically oriented within a semiconductor substrate. The resulting bipolar device is junction isolated from other circuits formed on the substrate by a p-well region.
Abstract:
A computing system for implementing at least one electronic circuit with gain comprises at least one two-dimensional molecular switch array. The molecular switch array is formed by assembling two or more crossed planes of wires into a configuration of devices. Each device comprises a junction formed by a pair of crossed wires and at least one connector species that connects the pair of crossed wires in the junction. The junction has a functional dimension in nanometers, and includes a switching capability provided by both (1) one or more connector species and the pair of crossed wires and (2) a configurable nano-scale wire transistor having a first state that functions as a transistor and a second state that functions as a conducting semiconductor wire. Specific connections are made to interconnect the devices and connect the devices to two structures that provide high and low voltages.
Abstract:
Semiconductor devices include a wide bandgap semiconductor layer having an array of discontinuous wide bandgap semiconductor regions therein that contribute to a reduction in ionization energies of dopants in the wide bandgap semiconductor layer relative to an otherwise equivalent wide bandgap semiconductor layer that is devoid of the array of discontinuous wide bandgap semiconductor regions. The discontinuous wide bandgap semiconductor regions and the wide bandgap semiconductor layer have the same net conductivity type, but the discontinuous wide bandgap semiconductor regions are typically more highly doped to thereby provide excess charge carriers to the wide bandgap semiconductor layer.