Abstract:
A system for loading and storing CNG onboard of a ship and for unloading it therefrom comprises CNG loading facilities for loading CNG on board of the ship, CNG storage facilities for storing the loaded CNG on board of the ship at nominal storage pressure and temperature, and CNG unloading facilities for unloading CNG to a delivery point. The delivery point requires the unloaded CNG to be at delivery pressure and temperature generally different from the storage pressure and temperature. Thus, the CNG unloading facilities comprise a CNG heater for heating the to-be-unloaded CNG prior to unloading, and a lamination valve for allowing the to-be-unloaded CNG to expand from its storage pressure to the delivery pressure. A compressor may also be provided to compress CNG that would not otherwise be spontaneously delivered.
Abstract:
The present invention concerns a system for storing energy in the form of compressed air, characterized in that it is made up of a set of straight or wound steel tubes (1) assembled to form a storage volume arranged at the surface, or in a subsurface, the assembly being enclosed in a thermally insulating envelope (2).
Abstract:
A storage system, including an outer casing having an evacuated inner volume; a vessel for storage located within the outer casing and having a plurality of protrusions distributed on an outer surface thereof; and a plurality of filamentary strands spanning the inner volume, wherein at least some of the plurality of protrusions are essentially tangentially contacted by a plurality of the filamentary strands to secure the vessel in six degrees of freedom relative to the outer casing.
Abstract:
A safety device for containers pressurized with gas safeguards the gas side of the working chamber of hydraulic accumulators. A relief apparatus (2) reduces an elevated gas pressure in the container (3) caused by heat. The relief apparatus (2) is a component loaded under the influence of a shear force or compressive force. The shape change of the component under the influence of heat on the safety device (1) in a space (5) closed to the outside occurs such that a fluid-conducting connection (6) from the inside of the container (3) to the outside in the direction of the surroundings is enabled.
Abstract:
An inspectable pressure vessel (10) for containing a fluid such as CNG, the vessel having a generally cylindrical shape over a majority of its length, at least one opening for gas loading and offloading and for liquid evacuation, at least one stainless steel layer as a first layer (100) for being in contact with the fluid when the fluid is contained within the vessel, the first layer being made of low-carbon stainless steel, and a further external composite layer (200) made of at least one fiber-reinforced polymer layer that will not be in contact with the fluid when the fluid is contained within the vessel.
Abstract:
A cryogenic fluid cylinder includes an inner vessel for holding cryogenic fluid, a cylindrically shaped outer vessel having a vertical longitudinal axis surrounds the inner vessel and forms an insulating space there between, and operating controls located on a top of the outer vessel. Customer or end user operating controls include a liquid-use valve for selectively dispensing liquid cryogen, a pressure-building valve for selectively controlling a pressure building circuit, and a gas-use valve for selectively dispensing cryogen gas. Supplier or maintenance personnel operating controls include an economizer regulator for selectively setting at least one desired pressure of the inner vessel, a vent valve for selectively venting cryogen fluid, and a vacuum pressure port for indicating vacuum pressure between the vessels. The end user controls are located on a front side of the outer vessel while the supplier controls are located on a rear side of the outer vessel.
Abstract:
Methods and systems for recovering, storing, transporting, and using compressed gas (such as methane gas and conventional Natural Gas) are disclosed. Exemplary methods generally involve transferring gas from a source to a subterranean capacitor and storing the gas in the capacitor and transferring gas from the subterranean capacitor to a transport or refueling tanker.
Abstract:
The present invention refers to replaceable upper or handle (2) and lower or support/base ring (4) elements for a pressurized container having an upper portion and a lower portion, wherein said upper and lower rings elements are manufactured from a thermostable material, a thermosetting material or a combination thereof, e.g. polyurethane, and comprise fastening means to releasably engage the ring elements with projections (3, 5) provided on the upper and lower portions of said pressurized container. The invention also refers to a pressurized container having said replaceable ring elements.
Abstract:
An apparatus includes a base member having a substantially planar surface, the base member having cuts that partially define features including a first leg member the first leg member hingably linked to the base member such that the first leg member extends from a planar surface of the base member, a first retaining member the first retaining member operative to engage and substantially retain the first leg member in a substantially upright position, a second leg member the second leg member hingably linked to the base member such that the second leg member extends from the planar surface of the base member, and a second retaining member the second retaining member operative to engage and substantially retain the second leg member in a substantially upright position.
Abstract:
An apparatus and method for constructing a cryogenic storage tank (700) having a welded inner tank (702), an outer shell (704) surrounding the welded inner tank (702), a concrete foundation (728) comprising a raised portion (752), a plurality of cellular glass blocks (734) positioned directly on top of the raised portion (752) of the concrete foundation (728), a leveling course of concrete (736) poured on top of the uppermost layer of the plurality of cellular glass blocks (734), and a mounting apparatus (718) affixed to the concrete foundation (728), where the welded inner tank (702) is positioned on top of the leveling course of concrete (736) and the outer shell (704) is affixed to the mounting apparatus (718) at locations around the periphery of the outer shell (704).