摘要:
Disclosed is a container for storing, transporting, and dissociating hydrate pellets, the container comprising: a first container (100) made up of a plurality of frames; a second container (200) which is rotatably installed inside the first container (100), stores hydrate pellets therein, and has an internal surface to which a heat insulating member is attached; and a refrigerating machine (300) which is installed inside the first container (100) and refrigerates the second container (200), wherein the second container (200) is equipped with a heating wire (210), which is heated to dissociate the hydrate pellets by being supplied with power, or with a hot water tube (220), through which hot water flows to dissociate the hydrate pellets, on the internal surface thereof.
摘要:
A method and apparatus are disclosed for transferring heat to or from metal hydrides contained in storage containers as hydrogen gas is being charged to or withdrawn from the storage containers, wherein the hydrogen gas being charged to or withdrawn from the storage containers functions as a convective energy carrier. A plurality of the containers are connected together in flow communication in series, so that when a pressure differential is established across the series of containers, hydrogen gas associated with the metal hydride will flow from one container to the next container in the direction of the lower pressure. A pressure differential is created across the series of containers by charging hydrogen to either the first or last container in the series, or by withdrawing hydrogen from either the first or last container in a series of containers that has been previously charged with hydrogen. Hydrogen gas flowing through the conduits connecting adjacent containers is heated or cooled in heat exchanger means associated with the conduits. The pressure differential across the series of containers can be periodically reversed by periodically alternating charging hydrogen to the first and last containers of the series during the charging of said containers, and by periodically alternating the discharge of hydrogen from the first and last containers of the series when hydrogen is being withdrawn from the series of containers.
摘要:
The present disclosure relates to a natural gas hydrate tank container loading system for transporting natural gas hydrate, and the present disclosure provides a natural gas hydrate tank container loading system, enabling self-powered power generation and boil-off (BOG) gas treatment, includes: a refrigerator for inhibiting the generation of boil-off gas which naturally generates in a natural gas hydrate tank container during transportation; and a solar cell, a battery, and a generator, which operates by means of the boil-off gas, for supplying electric power to the refrigerator, thereby ensuring a generation capacity sufficient to operate the refrigerator by means of the solar cell, the generator, and the battery, and thus always maintaining a stable phase equilibrium (self-preservation) in the natural gas hydrate tank container even during long-distance transportation and solving problems of fire, environmental pollution, or the like which occur when the boil-off gas (BOG) is discharged to the outside.
摘要:
The present invention relates to a natural gas hydrate tank container loading system for transporting natural gas hydrate, and the present invention provides a natural gas hydrate tank container loading system which enables automated connection of an electric power line and a boil-off pipe, and may automatically connect an electric power line and automatically connect the pipe by simultaneously stacking respective natural gas hydrate tank containers, in order to solve problems of a transportation method using the existing natural gas hydrate tank containers in the related art in that an operation of connecting an electric power line to a refrigerator for minimizing the occurrence of boil-off gas and maintaining a phase equilibrium condition in the tank containers and an operation of connecting the pipe for discharging the boil-off gas need to be manually and individually performed for long-distance transportation of a large amount of natural gas hydrate by using a ship, which causes an inconvenience.
摘要:
Continuous process for regasifying a feed stream having (i) a slurry phase comprising gas hydrate particles suspended in a produced liquid hydrocarbon and optionally free produced water and (ii) optionally a gaseous phase comprising free produced gaseous hydrocarbon thereby generating a regasified multiphase fluid and for separating the regasified multiphase fluid into its component fluids. The method includes (a) heating the feed stream to above the dissociation temperature of the gas hydrate thereby regasifying the feed stream by converting the gas hydrate particles into gaseous hydrocarbon and water, (b) separating a gaseous hydrocarbon phase from the regasified multiphase fluid thereby forming a gaseous hydrocarbon product stream and a liquid stream comprising a mixture of liquid hydrocarbon and water, (c) separating the liquid stream comprising a mixture of the liquid hydrocarbon and water into a liquid hydrocarbon phase and an aqueous phase; and (d) removing the liquid hydrocarbon phase as a liquid hydrocarbon product stream. The regasification production facility additionally has a concentrator vessel and the feed stream is passed to the concentrator vessel prior to being heated in step (a) to above the dissociation temperature of the gas hydrate particles wherein a gaseous phase comprising free gaseous hydrocarbon separates from the feed stream in the concentrator vessel and is removed from the concentrator as a gaseous hydrocarbon stream.
摘要:
Methods, apparatuses and systems directed to clathrate hydrate modular storage, applications and utilization processes. In one implementation, the present invention provides a method of creating scalable, easily deployable storage of natural gas and thermal energy by assembling an array of interconnecting, modular gas clathrate hydrate storage units.
摘要:
A system for loading and storing CNG onboard of a barge and for unloading it therefrom comprises CNG loading facilities for loading CNG on board of the barge, CNG storage facilities for storing the loaded CNG on board of the barge at nominal storage pressure and temperature, and CNG unloading facilities for unloading CNG to a delivery point. The delivery point requires the unloaded CNG to be at delivery pressure and temperature generally different from the storage pressure and temperature. Thus, the CNG unloading facilities comprise a CNG heater for heating the to-be-unloaded CNG prior to unloading, and a lamination valve for allowing the to-be-unloaded CNG to expand from its storage pressure to the delivery pressure. A compressor may also be provided to compress CNG that would not otherwise be spontaneously delivered.
摘要:
Methods, apparatuses and systems directed to clathrate hydrate modular storage, applications and utilization processes. In one implementation, the present invention provides a method of creating scalable, easily deployable storage of natural gas and thermal energy by assembling an array of interconnecting, modular gas clathrate hydrate storage units.
摘要:
An offshore hydrocarbon production system in which gases are economically stored for transport. After the produced hydrocarbons are separated into liquid (crude oil) and gases, the gases are separated into heavy and light gases. The heavy gases, which consist primarily of propane and butane, are stored as LPG (liquid petroleum gas) in a refrigerated LPG tank. The light gases (methane and other light gases) are hydrated and the ice crystals are stored in a refrigerated hydrate tank.
摘要:
A method and apparatus for safely, conveniently, and inexpensively liberating gas from gas hydrates includes the use of a device, provided adjacent to or in the bulk gas hydrates, for exposing the gas hydrates to heat from a gas or liquid (preferably steam). The gas hydrates can be directly exposed to the gas or liquid or indirectly exposed through a thermally conductive coil or channel. The heat from the gas or liquid dissociates the gas hydrates into the corresponding gas component and water component. After liberation, the gas component can be collected for further storage, transport, or use. The apparatus further includes a mechanism for moving at least a portion of the gas or liquid through the device for exposing the gas hydrates to heat. The device for exposing the gas hydrates to heat also can be movable, so it can be maintained in close proximity to or in contact with the gas hydrates for continued efficient gasification of the hydrates.