Abstract:
Organic light emitting devices are disclosed which are comprised of a heterostructure for producing electroluminescence wherein the heterostructure is comprised of an emissive layer containing a phosphorescent dopant compound. For example, the phosphorescent dopant compound may be comprised of platinum octaethylporphine (PtOEP), which is a compound having the chemical structure with the formula:
Abstract:
A method of fabricating an organic film is provided. A non-reactive carrier gas is used to transport an organic vapor. The organic vapor is ejected through a nozzle block onto a cooled substrate, to form a patterned organic film. A device for carrying out the method is also provided. The device includes a source of organic vapors, a source of carrier gas and a vacuum chamber. A heated nozzle block attached to the source of organic vapors and the source of carrier gas has at least one nozzle adapted to eject carrier gas and organic vapors onto a cooled substrate disposed within the vacuum chamber.
Abstract:
An organic photosensitive optoelectronic device having a plurality of cells disposed between a first electrode and a second electrode. Each cell includes a photoconductive organic hole transport layer adjacent to a photoconductive organic electron transport layer. A metal or metal substitute is disposed between each of the cells. At least one exciton blocking layer is disposed between the first electrode and the second electrode.
Abstract:
Emissive phosphorescent organometallic compounds are described that produce improved electroluminescence, particularly in the blue region of the visible spectrum. Organic light emitting devices employing such emissive phosphorescent organometallic compounds are also described. Also described is an organic light emitting layer including a host material having a lowest triplet excited state having a decay rate of less than about 1 per second; a guest material dispersed in the host material, the guest material having a lowest triplet excited state having a radiative decay rate of greater than about 1×105 or about 1×106 per second and wherein the energy level of the lowest triplet excited state of the host material is lower than the energy level of the lowest triplet excited state of the guest material.
Abstract:
Light emitting devices having charge transporting layers comprising one or more metal complexes are provided. More particularly, devices include hole transporting layers comprising at least one metal complex are disclosed. The present devices can further comprise an electron blocking layer for improved efficiency.
Abstract:
An organic device is provided, having a first electrode and a second electrode. A first organic layer is disposed between the first electrode and the second electrode. The first organic layer includes a first organic material, with a concentration of at least 50% molar, and a second organic material, with a concentration less than 50% molar. A second organic layer is also disposed between the first electrode and the second electrode. The second organic layer includes the second organic material, with a concentration of at least 50% molar, and the first organic material, with a concentration less than 50% molar. The first organic material may act as an n-dopant in the second organic layer, and the second organic material may act as a p-dopant in the first organic layer. Alternately, the first organic material may act as a p-dopant in the second organic layer, and the second organic material may act as an n-dopant in the first organic layer. Exemplary materials for the first and second organic materials include PTCDA and BTQBT. Devices that may be fabricated include organic light emitting devices, organic transistors, and organic photosensitive devices. Preferably, the electron affinity of the first organic material is within about 0.4 eV of the ionization potential of the second organic material, and more preferably within about 0.2 eV. The first and second organic layers may also be used in separate devices fabricated on the same substrate. A method of fabricating devices is provided, by co-depositing the first and second organic materials at different concentrations in different layers, such that a different material is the host in different layers.
Abstract:
A smart card may include integrated circuitry and I/O components composed of organic materials. Organic materials are advantageous because they remain intact under instances of physical stress. They permit the smart card to undergo flexion from time to time without damaging the processing components thereon. Further, use of organic materials leads to reduced costs during manufacture. For example, the organic materials may be provided directly upon substrates composed of ordinary plastic materials thereby reducing the costs of manufacture of these smart cards when compared with smart cards that are made of traditional silicon-based integrated circuits.
Abstract:
When the density of excitons in an organic single crystal (including the linear acenes, polyacenes, and thiophenes) approaches the density of molecular sites, an electron-hole plasma may form in the material altering the overall excitonic character of the system. The formation of the electron-hole plasma arises as a result of the screening of Coulomb interactions within individual excitons by injected free carriers. The large exciton densities required to accomplish this screening process can only be realized when excitons collect near dislocations, defects, traps, or are confined in heterostructures. Such confinement and subsequently large exciton densities allows for the observation of physical phenomena not generally accessible in an organic material. Specifically, the formation of an electron-hole plasma in an organic single crystal can allow for the observation of field-effect transistor action and electrically-pumped lasing. Amorphous organic materials and polymeric organic materials can also used to sustain an electron-hole plasma and demonstrate similar phenomena as well.
Abstract:
A highly transparent non-metallic cathode is disclosed that comprises a metal-doped organic electron injection layer that is in direct contact with a transparent non-metallic electron injecting cathode layer, such as indium tin oxide (ITO), wherein the metal-doped organic electron injection layer also functions as an exciton blocking or hole blocking layer. The metal-doped organic electron injection layer is created by diffusing an ultra-thin layer of about 5-10 Å of a highly electropositive metal such as Li throughout the layer. A representative embodiment of the highly transparent non-metallic cathode comprises a layer of ITO, a layer of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), which acts as an electron injection, exciton blocking, and hole blocking layer, and an ultra-thin layer of lithium, which degenerately dopes the layer of BCP, improving the electron injecting properties of the BCP layer. This cathode is demonstrated for use in an OLED having a transparency of about 90% or higher combined with a device external quantum efficiency of about 1% or higher.