Abstract:
The characteristics of an output of an exhaust gas sensor with respect to an air-fuel ratio of an engine are expressed according to a quadratic function, and the parameters of the quadratic function are sequentially identified according to a sequential identifying algorithm using data of the output of the exhaust gas sensor and data of an output of an air-fuel sensor which detects the air-fuel ratio of the engine. Deterioration evaluating parameters whose values change as the deterioration of a catalytic converter processes are sequentially determined from the identified values of the parameters of the quadratic function, and the deteriorated state of the catalytic converter is evaluated based on the determined deterioration evaluating parameters.
Abstract:
A system for purifying exhaust gas generated by an internal combustion engine having an adsorbent, installed in an exhaust system of the engine, which adsorbs unburned components of the exhaust gas such as hydrocarbons generated by the engine. The system has a first temperature sensor for detecting a temperature of the adsorbent and timer for measuring a time until the detected temperature becomes greater or equal to a predetermined value, when the measured time is less than a threshold value, it is discriminated that the adsorbent deteriorates. With this, the deterioration of the adsorbent can be discriminated accurately.
Abstract:
A control system for a plant includes a sensor for detecting an output from the plant, an adaptive controller for controlling a manipulated variable applied to control of the plant in a manner such that an output from the sensor becomes equal to a desired value, and an adaptive parameter-adjusting device for adjusting adaptive parameters used by the adaptive controller. The adaptive controller is configured in a manner adapted to a predetermined dead time shorter than an actual dead time which the plant and the detection means possess. Sampling timing of an input vector input to the adaptive parameter-adjusting device corresponds to the actual dead time.
Abstract:
A system for purifying exhaust gas generated by an internal combustion engine including a bypass branching out from the exhaust pipe downstream of a catalyst and merging to the exhaust pipe, an adsorber installed in the bypass, a bypass valve member which closes the bypass, and an EGR conduit connected to the bypass at one end and connected to the air intake system for recirculating the exhaust gas to the air intake system. The bypass valve member is opened for a period after engine startup to introduce the exhaust gas such that the adsorber installed in the bypass adsorbs the unburnt HC component in the exhaust gas. The adsorber adsorbs the HC component when the exhaust temperature rises and the adsorbed component is recirculated to the air intake system through the EGR conduit. In the system, the bypass valve is provided at or close to the branching point in the exhaust pipe and a chamber is provided close to the branching point such that the conduit is connected to the bypass at the one end in the chamber. The bypass valve member is combined with an exhaust pipe valve member as a combination valve such that when the bypass valve member closes the bypass, the exhaust pipe valve member opens the exhaust pipe. With the arrangement, the system can effectively prevent the exhaust pipe from being clogged even when a valve for closing a bypass is stuck in the closed position. At the same time, the system can provide a relatively short EGR conduit for recirculating unburnt HC component adsorbed from the adsorber and the adsorption and desorption are conducted optimally.
Abstract:
A deterioration of a catalytic converter for purifying an exhaust gas produced by burning a mixture of a fuel and air in an internal combustion engine, for example, is judged by supplying the exhaust gas to the catalytic converter, detecting the amount of a predetermined component of the exhaust gas which has passed through the catalytic converter with an exhaust gas sensor disposed downstream of the catalytic converter, calculating a target air-fuel ratio for the exhaust gas to be supplied to the catalytic converter for achieving a predetermined emission purifying capability of the catalytic converter based on a detected output signal from the exhaust gas sensor, and judging a deteriorated state of the catalytic converter based on the calculated target air-fuel ratio.
Abstract:
A control system is provided in an internal combustion engine in which a valve timing such as an opening time point and lift amount of an intake valve can be switched to a low-speed or high-speed valve timing within a lean-burn control range established in accordance with the operational state, such as an intake pipe internal absolute pressure and an engine revolution number of the engine, wherein an air-fuel ratio of an air-fuel mixture supplied to the internal combustion engine is enriched for a predetermined time when the valve timing is switched from the low-speed valve timing to the high-speed valve timing while carrying out a lean-burn control. Thus, even when the valve timing is switched over to the high-speed valve timing, the lean-burn control is carried out to prevent a misfiring or an unstable combustion state caused when the valve timing is switched during the lean-burn control, thereby providing a reduction in emission and an enhancement in drivability, while enhancing the specific fuel consumption.
Abstract:
An air-fuel control system for use with an internal combustion engine has a catalytic converter, a first exhaust gas sensor, and a second exhaust gas sensor. A sliding mode controller determines a correction quantity to equalize the concentration of the component downstream of the catalytic converter to a predetermined appropriate value based on the output from the second exhaust gas sensor. A feedback controller determines a correction quantity to converge the concentration of the component downstream of the catalytic converter toward the predetermined appropriate value, and feed-back controls the rate at which fuel is supplied to the engine with the determined correction quantity. The sliding mode controller has a hyperplane setting unit for establishing a hyperplane for the sliding mode control process with a linear function having as variables a plurality of quantities of the exhaust system which include at least the concentration, detected by the second exhaust gas sensor, of the component of the exhaust gas downstream of the catalytic converter and a rate of change of the concentration, and a calculator for determining the correction quantity to correct the air-fuel ratio of the internal combustion engine so as to converge the state quantities onto the established hyperplane and also to converge the state quantities toward a balanced point on the established hyperplane while converging the state quantities onto the hyperplane. The hyperplane setting unit variably establishes the hyperplane depending on the manner in which the state quantities converge onto the hyperplane.