Abstract:
A frame for optics used in interferometers that may include different materials having substantially similar, identical, or as close as practicable coefficients of thermal expansion from the material(s) used to make the beamsplitter and/or compensator without warping, bending, tilting or distorting the optics. The beamsplitter and/or compensator are mounted onto the frame of the interferometer using a three-point method of mounting, preferably using three pins for each component. Preferably, the pins are made of the same material as the beamsplitter and compensator, and all three components are made of Potassium Bromide (“KBr”) or Calcium Fluoride (“CaF2”) such that the optic instrument can operate to scan into the mid or far infrared. Stability in optical alignment is therefore achieved without requiring the optic instrument include only one material. The invention provides stability in situations where it is not possible to utilize a single material for every component of the interferometer.
Abstract:
A Fourier transform spectrometer (Da) of the invention extracts, in generating an integrated interferogram obtained by integrating a plurality of interferograms, an output of an interferometer (11a) within a predetermined range according to positioning information of a center burst in an interferogram measured at a time before measurement of an interferogram at the present time.
Abstract:
A spectrometric instrument comprising: a scanning interferometer having a beamsplitter for dividing incident optical radiation into a reflected beam, following a reflected beam path and a transmitted beam following a transmitted beam path; a monochromatic optical radiation source for launching a reference beam into the interferometer along a first propagation path to be initially incident on a first face of the beamsplitter; an observation optical radiation source for launching a divergent observation beam into the interferometer along a second propagation path to be initially incident on the first face of beamsplitter and overlap the reference beam at the first face; wherein the radiation sources cooperate to generate a first angle between the directions of propagation of the two beams along respective first and second propagation paths when initially and simultaneously incident at the first face which is larger than a divergence half-angle of the observation beam 64.
Abstract:
Calibration of an arbitrary spectrometer can use a stable monolithic interferometer as a wavelength calibration standard. Light from a polychromatic light source is input to the monolithic interferometer where it undergoes interference based on the optical path difference (OPD) of the interferometer. The resulting wavelength-modulated output beam is analyzed by a reference spectrometer to generate reference data. The output beam from the interferometer can be provided to an arbitrary spectral instrument. Wavelength calibration of the arbitrary spectral instrument may then be performed based on a comparison of the spectral instrument output with the reference data. By appropriate choice of materials for the monolithic interferometer, a highly stable structure can be fabricated that has a wide field and/or is thermally compensated. Because the interferometer is stable, the one-time generated reference data can be used over an extended period of time without re-characterization.
Abstract:
Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
Abstract:
An optical spectroscopy method and apparatus increases signal to noise ratio of detected signals. Sample light passed through a sample includes attenuated light pulses and characteristic light located between the attenuated light pulses, the characteristic light formed by interaction between light pulses incident the sample and sample molecules. The attenuated light pulses are substantially removed from the sample light emerging from the sample prior to detection, to increase signal to noise ratio of the detected signal.
Abstract:
A method and system are presented for determining a line profile in a patterned structure, aimed at controlling a process of manufacture of the structure. The patterned structure comprises a plurality of different layers, the pattern in the structure being formed by patterned regions and un-patterned regions. At least first and second measurements are carried out, each utilizing illumination of the structure with a broad wavelengths band of incident light directed on the structure at a certain angle of incidence, detection of spectral characteristics of light returned from the structure, and generation of measured data representative thereof. The measured data obtained with the first measurement is analyzed, and at least one parameter of the structure is thereby determined. Then, this determined parameter is utilized, while analyzing the measured data obtained with the second measurements enabling the determination of the profile of the structure.
Abstract:
A Micro Electro-Mechanical System (MEMS) spectrometer architecture compensates for verticality and dispersion problems using balancing interfaces. A MEMS spectrometer/interferometer includes a beam splitter formed on a first surface of a first medium at an interface between the first medium and a second medium, a first mirror formed on a second surface of the first medium, a second mirror formed on a third surface of the first medium and balancing interfaces designed to minimize both a difference in tilt angles between the surfaces and a difference in phase errors between beams reflected from the first and second mirrors.
Abstract:
A signal is amplified by making a CARS beam from an observed body and a reference beam which is a portion of a super continuum beam and has a frequency of ωAS=2ωP−ωST interfere with each other and taking out the signal from an interference beam of the CARS beam and the reference beam.
Abstract:
The present patent application provides an interference cavity for precisely controlling an optical path including a cavity formed by two equal distance arms, wherein a positive adjusting plate and a negative adjusting plate are disposed in the interference cavity for compensating the change of a cavity length with temperature and thereby ensuring that the interference cavity length is a constant. The present patent application utilizes the matching relationship between the change of the refractive index of the positive adjustment plate with the temperature and the change of the refractive index of the negative adjusting plates with the temperature to make the optical path difference OPL invariant with changes in the environment temperature and thereby to ensure the precision of the optical path.