Abstract:
Computationally implemented methods and systems that are designed for transmitting one or more requests for one or more identities of one or more transportation vehicle units for transporting one or more end users; receiving the one or more identities of the one or more transportation vehicle units for transporting the one or more end users, the one or more identified transportation vehicle units having been identified based, at least in part, on a determination that the one or more identified transportation vehicle units do not have any package delivery obligation that would be violated if the one or more identified transportation vehicle units transport the one or more end users to one or more destination locations; and directing the one or more identified transportation vehicle units to rendezvous with the one or more end users in order to transport the one or more end users to the one or more destination locations. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
Computationally implemented methods and systems that are designed for receiving a request for transporting one or more end users; identifying one or more transportation vehicle units for transporting the one or more end users to one or more destination locations based, at least in part, on determining whether the one or more transportation vehicle units have one or more delivery package obligations; and transmitting one or more directives that direct the one or more transportation vehicle units to rendezvous with the one or more end users in order to transport the one or more end users to the one or more destination locations. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
Computationally implemented methods and systems include determining presence of one or more external linking devices within communication range of a wearable computing device designed to be worn by a person, the determining being based, at least in part, on one or more signals transmitted by the one or more external linking devices and received by the wearable computing device, and the one or more external linking devices designed to communicate beyond the communication range of the wearable computing device, and directing the wearable computing device to communicate beyond the communication range via at least one of the one or more external linking devices that were determined to be within the communication range of the wearable computing device. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
A hands-free intercom may include a user-tracking sensor, a directional microphone, a directional sound emitter, and a communication interface. The user-tracking sensor may determine a location of a user so the directional microphone can measure vocal emissions by the user and the directional sound emitter can deliver audio to the user. The hands-free intercom may determine whether the user is communicatively coupled via a mobile device to a remote entity. The hands-free intercom may be configured to receive a handoff of the communicative coupling, for example, by acting as a peripheral of the mobile device, by requesting the handoff, and/or the like. The hands-free intercom may be configured to deliver communications from the user to an appliance and vice versa. The hands-free intercom may manage access rights of the various entities to prevent unauthorized communications.
Abstract:
Computationally implemented methods and systems include determining presence of one or more external linking devices within communication range of a wearable computing device designed to be worn by a person, the determining being based, at least in part, on one or more signals transmitted by the one or more external linking devices and received by the wearable computing device, and the one or more external linking devices designed to communicate beyond the communication range of the wearable computing device, and directing the wearable computing device to communicate beyond the communication range via at least one of the one or more external linking devices that were determined to be within the communication range of the wearable computing device. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
A computationally implemented system and method that is designed to, but is not limited to: electronically effecting state-machine-based emission of first-indication data indicative of first-requested-characteristic data descriptive of one or more human subjects elicited at least in part by electronic state-machine-based presentation of one or more characteristic-data-candidate prompts. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present disclosure.
Abstract:
A computationally implemented system and method that is designed to, but is not limited to: electronically performing transistor-based reception of first query selection data related to electronic transistor-based presentation of first query selection options regarding allocation data associated with machine-automated food allocation to one or more users. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present disclosure.
Abstract:
A power supply system includes a fuel cell configured to be activated from an inactive state to an active state to provide electricity to a power consuming system; and a heat transfer device configured to transfer heat energy generated by the power consuming system to the fuel cell while the fuel cell is in the inactive state.
Abstract:
In some embodiments, a system for responsive release of a medicament in an artificial joint region includes: an implantable sensor unit including at least one sensor, the implantable sensor unit configured to be implanted in an artificial joint region; a responsive release control unit including an electronic controller and memory, the responsive release control unit configured to receive signals from the implantable sensor unit and to send signals to an implantable medicament release unit; and the implantable medicament release unit, including a reservoir and a controllable release unit attached to the reservoir, the controllable release unit configured to provide access to the reservoir in response to signals from the responsive release control unit, the implantable medicament release unit configured to be implanted in the artificial joint region.