Abstract:
A phase-change memory element for reducing heat loss is disclosed. The phase-change memory element comprises a composite layer, wherein the composite layer comprises a dielectric material and a low thermal conductivity material. A via hole is formed within the composite layer. A phase-change material occupies at least one portion of the via hole. The composite layer comprises alternating layers or a mixture of the dielectric material and the low thermal conductivity material.
Abstract:
A dynamic random access memory (DRAM) cell is described, including a semiconductor pillar on a substrate, a capacitor on a lower portion of a sidewall of the pillar, and a vertical transistor on an upper portion of the sidewall of the pillar. The capacitor includes a first plate in the lower portion of the sidewall of the pillar, a second plate as an upper electrode at the periphery of the first plate, a third plate at the periphery of the second plate electrically connected with the first plate to form a lower electrode, and a dielectric layer separating the second plate from the first and third plates. A DRAM array based on the DRAM cell and a method for fabricating the DRAM array are also described.
Abstract:
Phase change memory devices and methods for manufacturing the same are provided. An exemplary embodiment of a phase change memory device comprises a substrate. A dielectric layer is formed over the substrate and a phase change material layer is embedded in the dielectric layer. A first conductive electrode is also embedded in the dielectric layer to penetrate the phase change material layer and extends perpendicular to a top surface of the dielectric layer.
Abstract:
A method for finding a defective machine comprises the steps of selecting a searching period in which a plurality of wafer lots including good wafer lots and bad wafer lots passes through machines, acquiring a lot-passing information related to the passing sequence of the wafer lots through the machines, calculating a bad-lot continuity by taking the lot-passing information into account, and determining a defective machine by taking the bad-lot continuity into account. The bad-lot continuity is calculated by the steps of determining an impact period based on the aggregation degree of the bad wafer lots, calculating a bad-lot distribution probability in the impact period, and calculating the bad-lot continuity by taking the bad-lot distribution probability into account.
Abstract:
A memory device is disclosed. A pillar structure comprises a first electrode layer, a dielectric layer overlying the first electrode layer, and a second electrode layer overlying the dielectric layer. A phase change layer covers a surrounding of the pillar structure. A bottom electrode electrically connects the first electrode layer of the pillar structure. A top electrode electrically connects the second electrode layer of the pillar structure.
Abstract:
A contact plug structure for a checkerboard dynamic random access memory comprises a body portion, two leg portions connected to the body portion and a dielectric block positioned between the two leg portions. Each leg portion is electrically connected to a deep trench capacitor arranged in an S-shape manner with respect to the contact plug structure via a doped region isolated by a shallow trench isolation structure. Preferably, the body portion and the two leg portions can be made of the same conductive material selected from the group consisting of polysilicon, doped polysilicon, tungsten, copper and aluminum, while the dielectric block can be made of material selected from the group consisting of borophosphosilicate glass. Particularly, the contact plug can be prepared by dual-damascene technique. Since the overlapped area between the contact plug structure and a word line can be dramatically decreased, the bit line coupling (BLC) can be effectively reduced.
Abstract:
An alternating phase shift mask with dark loops thereon, a memory array fabricated with the alternating phase shift mask, and a method of fabricating the memory. The dark loops in the mask always separate first regions with 180° phase difference from second regions with 0° phase difference to define active areas or gate-lines in a DRAM chip. By using the alternating phase shift mask to pattern gate-lines or active areas in a DRAM array, no unwanted image is created in the DRAM array and only one exposure is needed to achieve high resolution requirement.
Abstract:
A phase change memory device is provided. The phase change memory device comprises a substrate. An electrode layer is on the substrate. A phase change memory structure is on the electrode layer and electrically connected to the electrode layer, wherein the phase change memory structure comprises a cup-shaped heating electrode on the electrode layer. An insulating layer is on the cup-shaped heating electrode along a first direction covering a portion of the cup-shaped heating electrode. An electrode structure is on the cup-shaped heating electrode along a second direction covering a portion of the insulating layer and the cup-shaped heating electrode. A pair of double spacers is on a pair of sidewalls of the electrode structure covering a portion of the cup-shaped heating electrode, wherein the double spacer comprises a phase change material spacer and an insulating material spacer on a sidewall of the phase change material spacer.
Abstract:
Substrate isolation trench (224) are formed in a semiconductor substrate (120). Dopant (e.g. boron) is implanted into the trench sidewalls by ion implantation to suppress the current leakage along the sidewalls. During the ion implantation, the transistor gate dielectric (520) faces the ion stream, but damage to the gate dielectric is annealed in subsequent thermal steps. In some embodiments, the dopant implantation is an angled implant. The implant is performed from the opposite sides of the wafer, and thus from the opposite sides of each active area. Each active area includes a region implanted from one side and a region implanted from the opposite side. The two regions overlap to facilitate threshold voltage adjustment.
Abstract:
A method for fabricating a gate structure is provided. A pad oxide layer, a pad conductive layer and a dielectric layer are sequentially formed over a substrate. A portion of the dielectric layer is removed to form an opening exposing a portion of the pad conductive layer. A liner conductive layer is formed to cover the dielectric layer and the pad conductive layer. A portion of the liner conductive layer and a portion of the pad conductive layer are removed to expose a surface of the pad oxide layer to form a conductive spacer. The pad oxide layer is removed and a gate oxide layer is formed over the substrate. A first gate conductive layer and a second gate conductive layer are sequentially formed over the gate oxide layer. A portion of the gate oxide layer is removed and a cap layer to fill the opening.