Abstract:
Provided are a carbon nanotube composite containing a carbon nanotube coated with a protein having a catechol group and a metal ion bound to the catechol group and a method for manufacturing the same. According to the present disclosure, a carbon nanotube composite which exhibits controllable dispersibility and degree of crosslinkage while retaining the intrinsic physical properties of the carbon nanotube may be prepared. Since the phase change and tendency of aggregation of the carbon nanotube composite can be controlled quickly and repeatedly depending on the change in external environment, the carbon nanotube composite may be useful in various industrial fields including medicine, environment, etc. as a self-healing material.
Abstract:
Disclosed are a modified catalyst for converting ortho-hydrogen to para-hydrogen, in which a metal active material capable of converting ortho-hydrogen to para-hydrogen is coated on a surface of a porous support, a method for preparing the same, and an apparatus and a method for converting ortho-hydrogen to para-hydrogen in hydrogen gas using the same. Accordingly, a pressure drop may be prevented and impurities in hydrogen gas may also be simultaneously removed when ortho-hydrogen is converted to para-hydrogen, and a stable reaction operation may be enabled.
Abstract:
Disclosed is a catalyst filter, which includes a catalyst support and a nano metallic catalyst sprayed to a surface of the catalyst support. The catalyst filter uses catalyst slurry prepared by using a particulate catalyst, in which a small amount of nano metallic catalyst exhibiting a catalyst performance is sprayed to a surface of the catalyst support, different from an existing patent technique in which catalyst particles are formed and prepared as a support to consume a large amount of catalyst. Therefore, the specific surface area of the catalyst filter is not smaller than the specific surface area of the nano catalyst particles, and thus the catalyst filter may effectively remove and decompose ultra-low concentration gas-state contaminants in an indoor air.
Abstract:
The present disclosure relates to a novel strain capable of saccharifying and fermenting biomass-derived cellulose and a recombinant strain thereof with improved biomass saccharification capability. The present disclosure also relates to a method for producing a material useful as a bioenergy source material such as ethanol, acetic acid, formic acid, etc. using the strain or the recombinant strain. The strain or the recombinant strain may be usefully used in bioenergy industry.
Abstract:
Provided are an extracellular vesicle collecting apparatus using an electrode and a porous membrane and a method for using the same. The extracellular vesicle collecting apparatus includes i) an upper frame in which a pair of through holes is disposed so that a buffer solution flows therethrough, ii) a buffer tube which is inserted in the through holes and in which the buffer solution flows, iii) a positive electrode disposed on the upper frame, iv) a porous membrane located below the upper frame, v) a spacer which is located below the porous membrane and has a hollow space disposed therein, vi) a plurality of guide tubes through which a blood flows in the hollow space, vii) a lower frame which is coupled to the upper frame to be opposite to the upper frame and receives the porous membrane and the spacer therein, and viii) a negative electrode provided below the lower frame. Extracellular vesicles contained in the blood are collected by the porous membrane.
Abstract:
The present invention relates to a coating composition having excellent wavelength conversion efficiency and a wavelength converting thin film/sheet prepared using the same. The coating composition of the present disclosure includes 1 to 60 wt % of polyorgano-silsesquioxane, 0.0001 to 30.0 wt % of a wavelength converting agent, and a solvent, and exhibits a transmittance of 70% or more as compared to that of an aqueous solution. A wavelength converting thin film/sheet prepared by using the coating composition has not only excellent photoluminescence, thermal resistance, and light-fastness, but also moisture and oxygen permeability is low, and the visible light transmittance thereof is 70% or more as compared to that of the air, and when patterning is added, the photoluminescence intensity of sheet is at least two-fold higher than that of a non-patterned sheet. Therefore, the coating composition of the present invention may be conveniently used in the preparation of a wavelength converting thin film/sheet, and feasibly applied to the preparation of a solar cell in an efficient manner.
Abstract:
A method for manufacturing graphene is provided, comprising (1) introducing a supporting substrate in a reactor; (2) preparing (nano) crystalline alumina catalyst having catalytic activity on the supporting substrate to prepare an insulating substrate; (3) growing nano graphenes on the insulating substrate to manufacture graphene film comprising graphene layer of the nano graphenes, which are grown without use of metal catalyst substantially. The graphene layer composed of the nano graphene has spatially homogeneous structural and electrical properties even in synthesis as large area and can be applied to flexible electronic devices.In addition, as it has easy detachment of the substrate and the graphene film and can detach the graphene film without damage of the substrate, leaving no residual graphene on the substrate, it is possible to grow the nano graphene by reusing the substrate.
Abstract:
Disclosed is an apparatus for graphene wet transfer, which includes: a reservoir body having at least two reservoirs; a barrier structure located on the reservoir and having at least one separated space formed by barriers; and a substrate frame located below the barrier structure and having at least one substrate accommodation groove for accommodating a target substrate to which graphene is transferred. Here, each reservoir may be filled with a solution for a wet transfer process, and the graphene may be separately located in each separated space in a floating state in the solution.
Abstract:
A cured epoxy resin material is depolymerized by using a composition including a compound represented by the chemical formula of XOmYn (wherein X is hydrogen, alkali metal or alkaline earth metal, Y is halogen, m is a number satisfying 1≦m≦8 and n is a number satisfying 1≦n≦6), and a reaction solvent, wherein X is capable of being dissociated from XOmYn and Y radical is capable of being produced from XOmYn in the reaction solvent. It is possible to carry out depolymerization of a cured epoxy resin material, for example, at 200° C., specifically 100° C. or lower, and to reduce a processing cost and an energy requirement. It is also possible to substitute for a reaction system using an organic solvent as main solvent, so that the contamination problems caused by the organic solvent functioning as separate contamination source may be solved and environmental contamination or pollution may be minimized.
Abstract:
A nerve probe array has a connector made of a flexible material; and a plurality of probes coupled to the connector, each of the plurality of probe having an electrode formed at a body thereof. The plurality of probes are arranged with intervals in a length direction of the connector, and the connector surrounds an outer circumference of a nerve, and the plurality of probes pierce the outer circumference of the nerve and are inserted into the nerve.