Abstract:
A dissimilar material joint is formed by arranging a plurality of joint segments consecutively in a longitudinal direction. Each joint segment is formed by joining and integrating together a first member, an intermediate member, and a second member by explosive welding. A groove is formed in a joint end face of each joint segment, the joint end face being joined to another one of the segments, the groove spacing apart an end face of the first member and an end face of the second member from each other in a stacking direction. In the dissimilar material joint, the end faces of the respective first members of the joint segments that are adjacent to each other are joined together by welding, and the end faces of the respective second members of the joint segments that are adjacent to each other are joined together by welding.
Abstract:
A fluidtight and thermally insulating tank wall comprises:a multi-layer structure comprising a fluidtight barrier (5) and a thermally insulating barrier (4), retaining rods (22) attached to the bearing wall (7) between the insulating elements and extending in the direction of the thickness of the multi-layer structure to hold the multi-layer structure on the bearing wall, in which crossmembers (30) are attached to the retaining rods (22) such that in each instance a crossmember extends between two retaining rods at the interface between two insulating elements, the cover panels (11) of the insulating elements being connected to the crossmembers (30) so as to be held against the bearing wall via the crossmembers, and the fluidtight barrier (5) being connected to the crossmembers (30) so as to be held against the cover panels of the insulating elements via the crossmembers.
Abstract:
A method of creating a watertightness barrier for a wall of a watertightened thermally insulating tank, involves steps of: arranging a repeating structure including alternately a strip of sheet metal and an elongate welding flange connected to the support surface, so that the turned-up lateral edges of the strip of sheet metal are positioned against the adjacent welding flanges, welding the turned-up lateral edge to the welding flange using a straight welded seam along a first longitudinal portion, continuing the straight welded seam with an end portion which is deviated in the direction of an upper edge corner, and producing a watertight edge corner welded seam along a second longitudinal portion of the strip of sheet metal such that the edge corner welded seam watertightly meets the end portion of the welded seam.
Abstract:
A method for vaporizing a liquefied natural gas (LNG) stream and recovering heavier hydrocarbons from the LNG utilizing a heat transfer fluid is disclosed.
Abstract:
The present disclosure is directed to a method and system for detecting activation of a pressure relief device connected to a storage tank containing a pressurized gas. The method includes calculating a pressure relief device release rate based on a set of inputs, wherein the set of inputs includes at least one of a storage tank volume, a pressure relief set point, an orifice size of the pressure relief device, a gas density, and a reseat point for the pressure relief device. The method further includes monitoring the pressure within the storage tank and calculating a differential pressure reading over time, comparing the differential pressure reading over time to the pressure relief device release rate, and detecting a pressure relief device activation based on the comparison result.
Abstract:
A system for loading and storing CNG onboard of a barge and for unloading it therefrom comprises CNG loading facilities for loading CNG on board of the barge, CNG storage facilities for storing the loaded CNG on board of the barge at nominal storage pressure and temperature, and CNG unloading facilities for unloading CNG to a delivery point. The delivery point requires the unloaded CNG to be at delivery pressure and temperature generally different from the storage pressure and temperature. Thus, the CNG unloading facilities comprise a CNG heater for heating the to-be-unloaded CNG prior to unloading, and a lamination valve for allowing the to-be-unloaded CNG to expand from its storage pressure to the delivery pressure. A compressor may also be provided to compress CNG that would not otherwise be spontaneously delivered.
Abstract:
A method of producing natural gas from at least one reservoir, the method including the steps of producing the natural gas from the at least one reservoir; liquefying a first tranche of the natural gas to produce liquefied natural gas; and compressing a second tranche of the natural gas to produce a compressed natural gas.
Abstract:
There is provided a cryogenic tank having a dual construction for storing ultralow temperature liquid with improvement which allows simplicity in its construction and readiness of setup and allows reduction in the setup, yet achieves high reliability. For accomplishing the above-noted object, in a cryogenic tank having a dual construction with an inner tank for storing low-temperature liquefaction fluid therein and an outer tank enclosing the bottom and the shell of the inner tank. The inner tank includes a bottomed inner vessel formed of concrete and an inner cold resistant relief covering the inner face of the inner vessel. The outer tank includes a bottomed outer vessel formed of concrete and an outer cold resistant relief covering the inner face of the outer vessel.
Abstract:
The present invention concerns a cruciform construction element for use inside a tank to connect panels, which element is forged or molded in one piece and comprises intersecting webs.
Abstract:
A liquid cargo storage tank and a ship including the same are provided. The liquid cargo storage tank according to the present invention comprises: a body installed in a hull of a ship and having a liquid cargo receiving space by forming a space between the body and the hull; and a reinforcing plate installed in the lower part of the body in a state of being spaced apart from the underside of the body to be a floor of the liquid cargo receiving space.