Abstract:
A plasma is produced in a treatment space by diffusing a plasma gas at atmospheric pressure and subjecting it to an electric field created by two metallic electrodes separated by a dielectric material, a precursor material is mixed with the plasma, and a substrate film or web is coated by vapor deposition of the vaporized substance at atmospheric pressure in the plasma field. The deposited precursor is cured by electron-beam, infrared-light, visible-light, or ultraviolet-light radiation, as most appropriate for the particular material being-deposited. Plasma pre-treatment and post-treatment steps are used to enhance the properties of the resulting coated products. Similar results are obtained by atomizing and spraying the liquid precursor in the plasma field.
Abstract:
A polymer film capacitor is provided, utilizing a metallized film formed by a first vacuum-formed plasma treated surface, a vacuum-deposited, first radiation polymerized acrylate monomer film having first and second surfaces, the first surface being disposed on the first plasma-treated surface of the polymer substrate, and a metal layer disposed on the second surface of the first polymerized film. The metallized film is wound into a capacitor.
Abstract:
A thermally-stable cationic photoinitiator capable of flash vaporization under vacuum and temperature conditions of an available flash-evaporation chamber is selected. The photoinitiator is mixed with a cation-polymerizable monomer and/or oligomer of interest and the mixture is flash evaporated and condensed in conventional manner as a film on a cold substrate. The resulting vacuum-deposited, homogeneous layer is cured with a high-energy radiation source that causes the cationic photoinitiator to liberate acidic species that catalyze the crosslinking of the monomer/oligomer compounds in its deposited film form. As a result of the homogeneous, pinhole-free nature of the vacuum deposition process, the thin-film polymer product does not suffer from the disadvantages attendant to prior-art atmospheric processes for cationically-cured polymers. In addition, because of the versatility afforded by vacuum deposition, hybrid films of such polymers with inorganic materials are also easily manufactured in-line during the same process.
Abstract:
Methods and apparatus for plasma modifying a substrate are disclosed along with associated techniques for applying coatings to the substrate. Particular utility has been found using a hollow cathode to generate the plasma along with magnetic focusing means to focus the plasma at the surface of a substrate.
Abstract:
A high energy density, high power density capacitor having an energy density of at least about 0.5 J/cm.sup.3 is provided. The capacitor comprises a plurality of interleaved metal electrode layers separated by a polymer layer. The interleaved metal electrode layers terminate at opposite ends in a solder termination strip. The high energy density aspect of the capacitors of the invention is achieved by at least one of the following features: (a) the dielectric thickness between the interleaved metal electrode layers is a maximum of about 5 .mu.m; (b) the polymer is designed with a high dielectric constant .kappa. of at least about 3.5; (c) the metal electrode layers within the polymer layer are recessed along edges orthogonal to the solder termination strips to prevent arcing between the metal electrode layers at the edges; and (d) the resistivity of the metal electrode layers is within the range of about 10 to 500 ohms per square, or a corresponding thickness of about 200 to 30 .ANG..
Abstract:
Metal-polymer nanolaminate products are fabricated from a bulk nanolaminate material composed of thousands of alternating metal and polymer layers. The nanolaminate material is produced by a prior art ultra high speed vacuum nanotechnology process that forms metal layers separated by radiation cross linked multifunctional acrylate polymer materials. The polymer to metal ratio in the nanolaminate composite can be successfully controlled. The polymer chemistry in the nanolaminate can be varied to incorporate a broad range of functional groups. The nanolaminate products are safe to handle and are environmentally and chemically stable at least up to 250.degree. C. A change in polymer chemistry can be used to lower or enhance the thermal degradation point of the polymer material.
Abstract:
Radiant-barrier structures include visible images that do not materially alter the emissivity and reflective quality of the barrier. The images are formed either below the reflective metallic layer or on top of the protective layer of the barrier used in commercial and residential construction applications, apparel, tents and other heat-management applications. The images may contain product and application information as well as visual effects with functional and/or decorative value. In some radiant-barrier embodiments the image-forming process enhances the radiant-barrier performance by lowering the surface emissivity.
Abstract:
A process for forming a low emissivity, moisture vapor permeable metallized composite sheet by coating a moisture vapor permeable sheet with at least one metal and exposing the freshly deposited metal to an oxidizing plasma thereby forming a protective synthetic metal oxide over the metal. The composite sheet material is suitable for use as a building construction barrier layer such as roof lining and house wrap.
Abstract:
Functionalized multilayer structures are manufactured by a process whereby a substrate material is treated with a reactive-gas plasma to form an activated layer on the surface thereof, and then by depositing a liquid functional monomer on the activated layer to form a self-assembled functional layer. Any excess liquid monomer must be allowed to re-evaporate in order to obtain optimal functionality on the surface of the resulting structure. The deposition of the liquid layer is preferably carried out with high kinetic energy to ensure complete penetration of the monomer throughout the body of the substrate. For particular applications, prior to formation of the reactive layer the substrate may be coated with a high glass-transition temperature polymer or a metallic layer.
Abstract:
A multilayer dielectric structure is formed by vacuum depositing two-dimensional matrices of nanoparticles embedded in polymer dielectric layers that are thicker than the effective diameter of the nanoparticles, so as to produce a void-free, structured, three-dimensional lattice of nanoparticles in a polymeric dielectric material. As a result of the continuous, repeated, and controlled deposition process, each two-dimensional matrix of nanoparticles consists of a layer of uniformly distributed particles embedded in polymer and separated from adjacent matrix layers by continuous polymer dielectric layers, thus forming a precise three-dimensional nanoparticle matrix defined by the size and density of the nanoparticles in each matrix layer and by the thickness of the polymer layers between them. The resulting structured nanodielectric exhibits very high values of dielectric constant as well as high dielectric strength.