Vaccum deposition of cationic polymer systems

    公开(公告)号:US06468595B1

    公开(公告)日:2002-10-22

    申请号:US09783926

    申请日:2001-02-13

    CPC classification number: C23C14/12 B05D3/068 B05D3/144 B05D7/04

    Abstract: A thermally-stable cationic photoinitiator capable of flash vaporization under vacuum and temperature conditions of an available flash-evaporation chamber is selected. The photoinitiator is mixed with a cation-polymerizable monomer and/or oligomer of interest and the mixture is flash evaporated and condensed in conventional manner as a film on a cold substrate. The resulting vacuum-deposited, homogeneous layer is cured with a high-energy radiation source that causes the cationic photoinitiator to liberate acidic species that catalyze the crosslinking of the monomer/oligomer compounds in its deposited film form. As a result of the homogeneous, pinhole-free nature of the vacuum deposition process, the thin-film polymer product does not suffer from the disadvantages attendant to prior-art atmospheric processes for cationically-cured polymers. In addition, because of the versatility afforded by vacuum deposition, hybrid films of such polymers with inorganic materials are also easily manufactured in-line during the same process.

    High energy density capacitor
    35.
    发明授权
    High energy density capacitor 失效
    高能量密度电容器

    公开(公告)号:US6092269A

    公开(公告)日:2000-07-25

    申请号:US45266

    申请日:1998-03-20

    CPC classification number: H01G4/30 H01G4/18 Y10T29/435

    Abstract: A high energy density, high power density capacitor having an energy density of at least about 0.5 J/cm.sup.3 is provided. The capacitor comprises a plurality of interleaved metal electrode layers separated by a polymer layer. The interleaved metal electrode layers terminate at opposite ends in a solder termination strip. The high energy density aspect of the capacitors of the invention is achieved by at least one of the following features: (a) the dielectric thickness between the interleaved metal electrode layers is a maximum of about 5 .mu.m; (b) the polymer is designed with a high dielectric constant .kappa. of at least about 3.5; (c) the metal electrode layers within the polymer layer are recessed along edges orthogonal to the solder termination strips to prevent arcing between the metal electrode layers at the edges; and (d) the resistivity of the metal electrode layers is within the range of about 10 to 500 ohms per square, or a corresponding thickness of about 200 to 30 .ANG..

    Abstract translation: 提供了具有至少约0.5J / cm 3的能量密度的高能量密度高功率密度电容器。 电容器包括由聚合物层隔开的多个交错的金属电极层。 交错的金属电极层在焊接端接条中的相对端终止。 本发明的电容器的高能量密度方面通过以下特征中的至少一个来实现:(a)交错的金属电极层之间的电介质厚度最大为约5μm; (b)聚合物被设计成具有至少约3.5的高介电常数κ; (c)聚合物层内的金属电极层沿垂直于焊料端接条的边缘凹陷,以防止金属电极层在边缘处产生电弧; 和(d)金属电极层的电阻率在约10至500欧姆/平方的范围内,或对应的厚度为约200至30纳米。

    Metal nanolaminate composite
    36.
    发明授权
    Metal nanolaminate composite 失效
    金属纳米复合材料

    公开(公告)号:US5912069A

    公开(公告)日:1999-06-15

    申请号:US769422

    申请日:1996-12-19

    Abstract: Metal-polymer nanolaminate products are fabricated from a bulk nanolaminate material composed of thousands of alternating metal and polymer layers. The nanolaminate material is produced by a prior art ultra high speed vacuum nanotechnology process that forms metal layers separated by radiation cross linked multifunctional acrylate polymer materials. The polymer to metal ratio in the nanolaminate composite can be successfully controlled. The polymer chemistry in the nanolaminate can be varied to incorporate a broad range of functional groups. The nanolaminate products are safe to handle and are environmentally and chemically stable at least up to 250.degree. C. A change in polymer chemistry can be used to lower or enhance the thermal degradation point of the polymer material.

    Abstract translation: 金属聚合物纳米酸盐产品由由数千个交替的金属和聚合物层组成的体积的Naminaminate材料制成。 纳米材料通过现有技术的超高速真空纳米技术制造,其形成由辐射交联的多官能丙烯酸酯聚合物材料分离的金属层。 可以成功控制纳米复合材料中的聚合物与金属的比例。 可以改变纳米级氨基甲酸酯中的聚合物化学以掺入宽范围的官能团。 Nanolaminate产品可以安全处理,并且在至少250℃下是环境和化学稳定性的。聚合物化学的变化可用于降低或增强聚合物材料的热降解点。

    HEAT-MANAGEMENT STRUCTURES WITH IMAGES
    37.
    发明申请
    HEAT-MANAGEMENT STRUCTURES WITH IMAGES 审中-公开
    与图像的热管理结构

    公开(公告)号:US20130052419A1

    公开(公告)日:2013-02-28

    申请号:US13215516

    申请日:2011-08-23

    Abstract: Radiant-barrier structures include visible images that do not materially alter the emissivity and reflective quality of the barrier. The images are formed either below the reflective metallic layer or on top of the protective layer of the barrier used in commercial and residential construction applications, apparel, tents and other heat-management applications. The images may contain product and application information as well as visual effects with functional and/or decorative value. In some radiant-barrier embodiments the image-forming process enhances the radiant-barrier performance by lowering the surface emissivity.

    Abstract translation: 辐射屏障结构包括不会实质上改变屏障的发射率和反射质量的可见图像。 图像形成在反射金属层的下方或在商业和住宅建筑应用,服装,帐篷和其他热管理应用中使用的屏障的保护层的顶部上。 图像可能包含产品和应用程序信息以及具有功能和/或装饰价值的视觉效果。 在一些辐射屏障实施例中,图像形成过程通过降低表面辐射率来增强辐射屏障性能。

    SELF-ASSEMBLED FUNCTIONAL LAYERS IN MULTILAYER STRUCTURES
    39.
    发明申请
    SELF-ASSEMBLED FUNCTIONAL LAYERS IN MULTILAYER STRUCTURES 有权
    多层结构中的自组装功能层

    公开(公告)号:US20120184165A1

    公开(公告)日:2012-07-19

    申请号:US13007639

    申请日:2011-01-16

    Abstract: Functionalized multilayer structures are manufactured by a process whereby a substrate material is treated with a reactive-gas plasma to form an activated layer on the surface thereof, and then by depositing a liquid functional monomer on the activated layer to form a self-assembled functional layer. Any excess liquid monomer must be allowed to re-evaporate in order to obtain optimal functionality on the surface of the resulting structure. The deposition of the liquid layer is preferably carried out with high kinetic energy to ensure complete penetration of the monomer throughout the body of the substrate. For particular applications, prior to formation of the reactive layer the substrate may be coated with a high glass-transition temperature polymer or a metallic layer.

    Abstract translation: 功能化多层结构是通过以下方法制造的,其中基板材料用反应气体等离子体处理以在其表面上形成活化层,然后通过在活化层上沉积液体官能单体以形成自组装功能层 。 必须允许任何多余的液体单体再蒸发,以便在所得结构的表面上获得最佳的功能。 液体层的沉积优选以高动能进行,以确保单体完全渗透到基底的整个体内。 对于特定应用,在形成反应层之前,可以用高玻璃化转变温度聚合物或金属层涂覆基材。

    NANO-STRUCTURED DIELECTRIC COMPOSITE
    40.
    发明申请
    NANO-STRUCTURED DIELECTRIC COMPOSITE 有权
    纳米结构电介质复合材料

    公开(公告)号:US20120003449A1

    公开(公告)日:2012-01-05

    申请号:US12828146

    申请日:2010-06-30

    Abstract: A multilayer dielectric structure is formed by vacuum depositing two-dimensional matrices of nanoparticles embedded in polymer dielectric layers that are thicker than the effective diameter of the nanoparticles, so as to produce a void-free, structured, three-dimensional lattice of nanoparticles in a polymeric dielectric material. As a result of the continuous, repeated, and controlled deposition process, each two-dimensional matrix of nanoparticles consists of a layer of uniformly distributed particles embedded in polymer and separated from adjacent matrix layers by continuous polymer dielectric layers, thus forming a precise three-dimensional nanoparticle matrix defined by the size and density of the nanoparticles in each matrix layer and by the thickness of the polymer layers between them. The resulting structured nanodielectric exhibits very high values of dielectric constant as well as high dielectric strength.

    Abstract translation: 通过真空沉积嵌入在聚合物电介质层中的纳米颗粒的有效直径的纳米颗粒的二维矩阵形成多层介电结构,以便产生纳米颗粒的无空隙结构的三维晶格 聚合物介电材料。 作为连续,重复和控制的沉积过程的结果,纳米颗粒的每个二维矩阵由均匀分布的颗粒层嵌入聚合物中并且通过连续的聚合物介电层与相邻的基质层分离,从而形成精确的三维结构, 由每个基质层中的纳米颗粒的尺寸和密度以及它们之间的聚合物层的厚度限定的三维纳米颗粒基质。 所得到的结构化纳米介电材料具有非常高的介电常数以及高介电强度。

Patent Agency Ranking