Abstract:
Provided are a thin film transistor (TFT) substrate and a method for manufacturing the same. The method comprises forming on a substrate a conductive layer, an impurity-doped silicon layer, and an intermediate layer, wherein the intermediate layer comprises intrinsic silicon; patterning the intermediate layer, the impurity-doped silicon layer, and the conductive layer to form a data line, a source electrode, a drain electrode, ohmic contact portions, and intermediate portions, wherein an ohmic contact portion and an intermediate portion are on the source electrode, and an ohmic contact portion and an intermediate portion are on the drain electrode; forming an intrinsic silicon layer on the substrate; and patterning the intrinsic silicon layer to form a semiconductor layer forming channel portion between the source electrode and the drain electrode, and a contact portion on the intermediate portion.
Abstract:
The present invention provides a thin film transistor array panel comprising a substrate; a gate line containing Ag formed on the substrate at a low temperature to prevent agglomeration, a first gate insulating layer formed on the gate line, a second gate insulating layer formed on the first gate insulating layer, a data line perpendicularly intersecting the gate line, and a thin film transistor connected to the gate line and the data line, and a manufacturing method thereof.
Abstract:
A method of electrically eliminating defective solar cell units that are disposed within an integrated solar cells module and a method of trimming an output voltage of the integrated solar cells module are provided, where the solar cells module has a large number (e.g., 50 or more) of solar cell units integrally disposed therein and initially connected in series one to the next. The method includes providing a corresponding plurality of repair pads, each integrally extending from a respective electrode layer of the solar cell units, and providing a bypass conductor integrated within the module and extending adjacent to the repair pads. Pad-to-pad spacings and pad-to-bypass spacings are such that pad-to-pad connecting bridges may be selectively created between adjacent ones of the repair pads and such that pad-to-bypass connecting bridges may be selectively created between the repair pads and the adjacently extending bypass conductor.
Abstract:
A TFT array panel-including a substrate, a gate line having a gate electrode, a gate insulating layer formed on the gate line, a data line having a source electrode and a drain electrode spaced apart from the source electrode, a passivation layer formed on the data line and the drain electrode, and a pixel electrode connected to the drain electrode is provided. The TFT array panel further includes a protection layer including Si under at least one of the gate insulating layer and the passivation layer to enhance reliability.
Abstract:
A TFT includes a gate electrode, an active layer, a source electrode, a drain electrode, and a buffer layer. The gate electrode is formed on the substrate; the active layer is formed on the gate electrode. The source and drain electrodes, formed on the active layer, are separated by a predetermined distance. The buffer layer is formed between the active layer and the source and drain electrodes. The buffer layer has a substantially continuously varying content ratio corresponding to a buffer layer thickness. The buffer layer is formed to suppress oxidation of the active layer, and reduce contact resistance.
Abstract:
The present invention provides a thin film transistor array panel comprising a substrate; a gate line containing Ag formed on the substrate at a low temperature to prevent agglomeration, a first gate insulating layer formed on the gate line, a second gate insulating layer formed on the first gate insulating layer, a data line perpendicularly intersecting the gate line, and a thin film transistor connected to the gate line and the data line, and a manufacturing method thereof.
Abstract:
The present invention relates to a thin film transistor, a method thereof and an organic light emitting device including the thin film transistor. According to an embodiment of the present invention, the thin film transistor includes a substrate, a control electrode, an insulating layer, a first electrode and a second electrode, a first ohmic contact layer and a second ohmic contact layer, and a semiconductor layer. The control electrode is formed on the substrate, and the insulating layer is formed on the control electrode. The first and the second electrodes are formed on the insulating layer. The first ohmic contact layer and the second ohmic contact layer are formed on the first electrode and the second electrode. The semiconductor layer is formed on the first ohmic contact layer and the second ohmic contact layer to fill between the first and the second electrodes.
Abstract:
A method of manufacturing a silicon layer includes pretreating a surface of a silicon nitride layer formed on a substrate through a plasma enhanced chemical vapor deposition method using a first reaction gas including at least one of silicone tetrafluoride (SiF4) gas, a nitrogen trifluoride (NF3) gas, SiF4—H2 gas and a mixture thereof. Then, a silicon layer is formed on the pretreated silicon nitride layer through the plasma enhanced chemical vapor deposition method using a second reaction gas including a mixture of gas including silicon tetrafluoride (SiF4), hydrogen (H2) and argon (Ar).
Abstract:
A thin film transistor (TFT) substrate comprises: a plastic insulation substrate; a first silicon nitride layer with a first refractive index, formed one surface of the plastic insulation substrate; and a TFT comprising a second silicon nitride layer formed with a second refractive index smaller than the first refractive index on the first silicon nitride layer. Thus, the present invention provides a TFT substrate wherein there is reduced a problem in that thin films are lifted from a plastic insulation substrate.
Abstract:
A display device includes an insulating substrate, a switching TFT formed on the substrate that receives a data voltage and that includes a first semiconductor layer, a driving TFT formed on the substrate that includes a control terminal connected to an output terminal of the switching TFT and a second semiconductor layer including polysilicon and a halogen material, an insulating layer formed on the switching TFT and the driving TFT, a first electrode formed on the insulating layer and electrically connected to an output terminal of the driving TFT, an organic light emitting layer formed on the first electrode, and a second electrode formed on the organic light emitting layer.