Abstract:
Diagnostic kit to diagnose Incontinentia Pigmenti (IP) (Pigment Incontinence) by means of which to make an analysis of a biological sample of a human organism to detect alterations in the nucleotide sequence of the IP locus. The diagnostic kit comprising primers for Real Time quantitative PCR analyses.
Abstract:
The present invention places in the field of the maintenance of aeration, conditioning, air-conditioning, etc. plants, and in particular the present invention relates to a method for evaluating the cleaning state of a plant, with particular reference to the atmospheric particulate.
Abstract:
A portable gamma camera includes a containment body (2), a scintillation measuring structure (3) housed in the containment body (2), a collimator (4) associated with the measuring structure (3), a display (5) positioned on the containment body (2) and an electronic controller unit (6), operating between the measuring structure (3) and the display (5) for generating on the display (5) images representing the radiation intercepted by the measuring structure (3).
Abstract:
The present invention relates to a method and an apparatus to perform frequency comb spectroscopy. The method includes: —Arranging a waveguide optical cavity (3) having a plurality of cavity mode frequencies with a cavity mode frequency spacing (FSR), said waveguide optical cavity being dispersive so that the frequency spacing of the cavity modes is wavelength dependent; —Arranging a sample (S) with respect to the waveguide optical cavity (3) so that the sample is capable of absorbing light travelling into the waveguide optical cavity; —Coupling pulsed light coming from a light source (1) into the waveguide optical cavity (3), the source light including source comb frequencies (OCF) with a source frequency spacing (RR), the coupled light including an interval of frequencies centered on a main frequency of said comb frequencies due to cavity dispersion; —Locking the waveguide optical cavity to the frequency comb at said main optical frequency; —Detecting transmitted cavity frequencies; —Determining absorption by said sample (S) of said main optical frequency from the detected transmitted frequencies, —Changing the cavity mode frequency (FSR) spacing or the source frequency spacing (RR); —Coupling the pulse light to the waveguide optical cavity (3), the coupled light including an interval of frequencies centered on a second main frequency of said comb frequencies due to cavity dispersion; —Locking the waveguide optical cavity to the frequency comb at said second main optical frequency; —Detecting transmitted cavity frequencies; —Determining absorption by said sample of said second main optical frequency from the detected transmitted frequencies.
Abstract:
An elongated microwave powered lamp (1) having one or more bulbs with any length or shape or disposition according to a linear series, straight or curved, includes: at least one transparent elongated bulb (2) containing, in an inner space thereof, a material apt to be excited by microwave irradiation thereby emitting an electromagnetic radiation; a coaxial microwave antenna placed outside the bulb (2) and respectively connected to a microwave source (81) via corresponding antenna lead (91), said bulb (2) and said at least one microwave coaxial antenna being displaced in a close relationship to each other to allow the microwave excitation of said material, wherein the outer tubular conductor of the coaxial antenna (5) has spaced holes (6) formed therethrough and facing the bulb (2), at which microwaves are released toward the bulb.
Abstract:
A portable gamma camera includes a containment body (2), a scintillation measuring structure (3) housed in the containment body (2), a collimator (4) associated with the measuring structure (3), a display (5) positioned on the containment body (2) and an electronic controller unit (6), operating between the measuring structure (3) and the display (5) for generating on the display (5) images representing the radiation intercepted by the measuring structure (3).
Abstract:
A UV lamp includes a UV lamp unit including a tubular bulb and an antenna inserted in the tubular bulb, and an antenna lead for supplying microwave energy from a microwave energy source to the UV lamp unit. The antenna lead includes a bent portion, one end of which is connected to the antenna and the other end is connectable to the microwave energy source.
Abstract:
A semiconductive substrate (1) is described that is suitable for realising electronic and/or optoelectronic devices of the type comprising at least one substrate (3), in particular of single crystal silicon, and an overlying layer of single crystal silicon (5). Advantageously, according to the invention, the semiconductive substrate (1) comprises at least one functional coupling layer (10) suitable for reducing the defects linked to the differences in the materials used. In particular, the functional coupling layer 10 comprises a corrugated portion (6) made in the layer of single crystal silicon (5) and suitable for reducing the defects linked to the differences in lattice constant of such materials used. Alternatively, the functional coupling layer (10) comprises a porous layer (4) arranged between the substrate of single crystal silicon (3) and the layer of single crystal silicon (5) and suitable for reducing the stress caused by the differences between the thermal expansion coefficients of the materials used. A manufacturing process of such a semiconductive substrate is also described.
Abstract:
A device (7) for the rehabilitation of the movements of the foot (1) includes a supporting base (8) and a mobile platform (9) with a supporting surface (10) for resting the sole of the foot (1), wherein the mobile platform (9) is secured to the supporting base (8) by a pure rotation movement mechanism (12) with three degrees of freedom of rotary movement independent the one from the other and placed in parallel which allow rotations of the mobile platform around three axes (13, 14, 15) which intersect one another in a single rotation center (P). The supporting surface (10) is turned towards the rotation center (P) and is distant from the rotation center (P) in such a way that the rotation center (P) is positioned in correspondence to the ankle (2) of the foot (1).
Abstract:
A device for controlling liquid motion includes a substrate (10) of material having piezoelectric properties, and a system for controlling the motion of a quantity of liquid placed in contact with the substrate. The control system includes at least one interdigitated transducer (T1, T3, T5, T7), applied to the substrate (10) and designed for selectively generating a surface acoustic wave adapted to propagate on the substrate (10) and interact with the quantity of liquid. The control system further includes an acoustic resonator (30) which is placed on the path of the surface acoustic wave, and which is adapted to normally allow the forward transmission of the surface acoustic wave having a frequency equal to a resonance frequency of the acoustic resonator, and to reflect the surface acoustic wave back towards the transducer when the quantity of liquid is present within the acoustic resonator.