Abstract:
A semiconductor memory device includes a sub memory cell array region having memory cells each connected between word lines extending in a first direction and bit lines extending in a second direction that is orthogonal to the first direction of extension of the word lines and a sub word line driver region disposed at a side of the sub memory cell array region in the first direction and including sub word line drivers that activate the word lines. A sensing region is disposed at a side of the sub memory cell array region in the second direction and including an equalizer that precharges the bit line in response to a signal transferred through a drive signal line and at least one first control signal driver that activates an inverted control signal line in response to a signal transferred through a control signal line. A conjunction region disposed at an intersection between the sub word line driver region and the sensing region, in which the inverted control signal line is connected to the drive signal line.
Abstract:
A semiconductor device includes a semiconductor package, a circuit board and an interval maintaining member. The semiconductor package has a body and a lead protruded from the body. The circuit board has a first land electrically connected to the lead. The interval maintaining member is interposed between the circuit board and the body. The interval maintaining member maintains an interval between the lead and the first land. Thus, an interval between the lead and the land is uniformly maintained, so that a thermal and/or mechanical reliability of the semiconductor device is improved.
Abstract:
A voltage-controlled oscillator (VCO) circuit includes a level shifter, and a semiconductor device includes the VCO circuit. The VCO circuit includes an input voltage receiver, a current mirror, and a frequency oscillator. The input voltage receiver receives a first voltage input to the VCO circuit so as to generate a first current. The current mirror copies the first current so as to generate a second current. The frequency oscillator oscillates in response to the second current. The input voltage receiver includes a level shifter and a first current generator. The level shifter shifts a voltage level of the first voltage to a voltage level of a second voltage. The first current generator generates the first current corresponding to the second voltage
Abstract:
A projection-type display apparatus and a display method thereof are disclosed, the projection-type display apparatus including a coated portion which is formed on a surface of a substrate, and which scans a video onto a screen, and a patterned portion which is formed on another surface of the substrate in a serrated pattern, wherein the serrated pattern is formed on the substrate according to the surface area of the patterned portion and the depth of the serrated pattern. A serrated pattern is formed on a substrate forming a reflective portion to reflect a video on a screen, so the cooling surface area of the substrate is increased, thereby compensating for distortions in video scanned onto the screen.
Abstract:
A light source assembly includes a light source which emits light; a detector which detects the light and generates a light signal based on a property of the light; an operator operably connected to the detector and which receives the light signal and calculates a color coordinate of the light source based on the light signal; a comparator operably connected to the operator and which compares the color coordinate of the light source to a predetermined reference color coordinate; and a control unit operably connected to the comparator and which controls a pulse width modulation signal transmitted to the light source based on a result of the comparison of the comparator.
Abstract:
Example embodiments of the present invention include a socket for testing a semiconductor package. The socket comprises a body having a through hole. A lower magnet is disposed in a lower region of the through hole, and a first type magnetic pole of the lower magnet is directed upward. An upper magnet is disposed in an upper region of the through hole, wherein the first type magnetic pole of the upper magnet is directed toward the lower magnet. The upper and lower magnets are structured to absorb a shock wave which is generated when the semiconductor package is arranged for testing. A conductive medium is disposed between the lower magnet and the upper magnet to electrically couple contactors of the semiconductor package to a base substrate of the socket.
Abstract:
In a method of forming a carbon nano-tube, an oxidized metal layer is formed on a substrate. An insulation layer having an opening is formed on the oxidized metal layer to expose a surface of the oxidized metal layer through the opening. The oxidized metal layer exposed through the opening is converted into a catalyst metal layer pattern for allowing a carbon nano-tube to grow from the catalyst metal layer pattern. The carbon nano-tube grows from the catalyst metal layer pattern to form a carbon nano-tube wire in the opening. Thus, the carbon nano-tube may not grow between the insulation layer pattern and the catalyst metal layer pattern.
Abstract:
A system and method for testing a semiconductor integrated circuit (IC) in parallel includes a probe chuck, a test head, and a test controller. The probe chuck loads a plurality of different types of semiconductor DUTs. The test head provides a plurality of circuit sites to independently and simultaneously test the different types of semiconductor DUTs, and the test controller controls the test head and the probe chuck.
Abstract:
A ferroelectric memory device and methods of forming the same are provided. Forming a ferroelectric device includes forming an insulation layer over a substrate having a conductive region, forming a bottom electrode electrically connected to the conductive region in the insulation layer, recessing the insulation layer, and forming a ferroelectric layer and an upper electrode layer covering the bottom electrode over the recessed insulation layer, The bottom electrode protrudes over an upper surface of the recessed insulation layer.
Abstract:
A disk loading apparatus, such as is disposed on a mobile electronic device to load a disk in a position to record information to or reproduce information from the disk, includes a main chassis, a loader assembly disposed on the main chassis to raise and lower the disk, and having a chucking unit, conveying rollers disposed to the main chassis to move the disk, a guide unit to guide ascending and descending movements of the loader assembly, so that the chucking unit compresses and chucks the disk, and a power transmitting unit to transmit power to the conveying rollers and the guide unit. With this, the mobile electronic device, such as a camcorder or the like, can implement a conveyance of the disk while satisfying such characteristics as a quality in appearance thereof, and a miniaturization in size thereof.