Abstract:
An augmented reality (AR) optical device comprises an AR optical system configured to generate an AR image and lay the AR image over an actual environment image perceived by a user and a light attenuator disposed in a direction along which the AR optical system is optically exposed to an actual environment and configured to attenuate a brightness of the actual environment image.
Abstract:
The present disclosure relates to a confocal imaging apparatus using a chromatic aberration lens, which is capable of quickly implementing multiple tomographic images by making it possible to quickly scan the entire object without moving the light source or the object. Since the present invention is configured to generate a three-dimensional image using multiple tomographic images by a chromatic aberration lens without moving the light source or the object up and down, there is an effect of remarkably shortening the time it takes to implement the multiple tomographic images.
Abstract:
The present disclosure relates to a confocal imaging apparatus using a chromatic aberration lens, which is capable of quickly implementing multiple tomographic images by making it possible to quickly scan the entire object without moving the light source or the object. Since the present invention is configured to generate a three-dimensional image using multiple tomographic images by a chromatic aberration lens without moving the light source or the object up and down, there is an effect of remarkably shortening the time it takes to implement the multiple tomographic images.
Abstract:
The present invention is intended to provide a light-emitting diode (LED) structure which can be easily transferred onto another substrate, a transfer assembly whose adhesive strength with LED structures can be maintained in spite of repetitive transfer processes, LED structures and a transfer assembly for selectively transferring the LED structures, and a transfer method using the same.
Abstract:
A nitride semiconductor light-emitting device and a method for manufacturing same for improving the electrostatic discharge (ESD) characteristics of the nitride semiconductor light-emitting device. The light-emitting device includes an active layer formed flat using a low conductivity material, on a first conductive semiconductor layer having a v-pit structure on the upper surface thereof, and a second conductive semiconductor layer, or has a v-pit structure on a junction surface between a second conductive semiconductor layer and an active layer formed flat using a low conductivity material on a first conductive semiconductor layer having a v-pit structure on the upper surface thereof. Thus, a v-pit area has a thickness equal to or greater than a critical thickness and thus has very low conductivity, thereby preventing the flow of a current.
Abstract:
Disclosed is a device for manufacturing a skin-simulating phantom, which has properties that are similar to those of real skin, using a 3D printer so that layers are stacked to form a multi-layered structure and a nozzle tip connected to the 3D printer is used to provide roughness, and a method of manufacturing a skin-simulating phantom using the same. According to this present invention, solutions can be mixed, depending on the component constitution reflecting the optical properties of the skin, using a program that is set depending on the type of skin. The output condition of the 3D printer can be controlled using a program that is set so as to conduct a step of comparing measured thickness and roughness values to those of the real skin and performing feedback. The nozzle tip connected to the 3D printer can move up and down to provide roughness. Further, the multi-layered structure can be manufactured using the 3D printer, thereby outputting and embodying lesions.
Abstract:
A fluorescent image acquisition and projection apparatus for real-time visualization of an invisible fluorescent signal is provided. The apparatus visualizes an invisible fluorescent signal generated from a target object (a tissue of a living body, a cell of a living body, or the like) by using a photodetection unit and a projector in real time. The apparatus directly projects a visualized fluorescent signal onto a region of the target object where the invisible fluorescent signal is generated, thereby enabling users to determine and confirm the generation location of the fluorescence with the naked eye.
Abstract:
Disclosed herein is a method for quantifying a pigmented lesion using Optical Coherence Tomography (OCT). The method includes (a) irradiating light and receiving an interference signal produced by reflection of the light from first and second boundary layers of a pigmented lesion; and (b) calculating size information of the pigmented lesion using phase information of the interference signal. According to embodiments of the present invention, there is an advantage of allowing calculation of size information of a pigmented lesion using OCT, by increasing a measurement range in the axial direction to which beams are irradiated.
Abstract:
An object of the present invention is to provide a light emitting diode having a heterogeneous material structure and a method of manufacturing thereof, in which efficiency of extracting light to outside is improved by forming depressions and prominences configured of heterogeneous materials different from each other before or in the middle of forming a semiconductor material on a substrate in order to improve the light extraction efficiency.
Abstract:
There is provided a light emitting apparatus including: at least one pair of lead frames; a light emitting device electrically connected to the lead frames to emit ultraviolet rays; a body including a side wall surrounding the light emitting device, and a groove portion formed in an upper surface of the side wall to receive an adhesive; and a lens part disposed above the light emitting device and fixed to the upper surface of the side wall of the body by the adhesive.