Abstract:
A method for a wireless communication network is presented. In one embodiment, the method includes receiving, by a base station, information about one or more interfering base stations with respect to a communication channel used by a mobile station. The method includes sending silence requests to an interfering base station to reduce interference from that interfering base station with respect to the communication channel. The method further includes establishing communication with the mobile station via the communication channel.
Abstract:
A station grouping mechanism has been presented for a wireless device that collects Multi-hop Relay Base Station (MR-BS) and Relay Stations (RSs) into groups according to their locations in a tree topology and assigns them with a phase. Grouping or partitioning MR-BS and RSs and assigning a distinct phase to the group prevent the MR-BS and the RSs from transmitting and receiving at the same time.
Abstract:
Embodiments of a base station and method for reducing asynchronous interference in a multi-tier OFDMA overlay network are generally described herein. In some embodiments, a lower-tier base station is configured to adjust OFDMA frame boundaries to cause frames communicated by a higher-tier to arrive within a cyclic prefix at the lower-tier base station. The lower-tier base station may also be configured to adjust OFDMA frame boundaries to cause frames communicated by a lower-tier of the network to arrive within a cyclic prefix at a higher-tier mobile station. Accordingly, frames from one tier may arrive within the cyclic prefix of another thereby reducing asynchronous interference.
Abstract:
A protocol framework for MS handover in MR networks includes new messages and an optimized flow of these messages. A framework for use in a multi-hop topology of MR networks optimizes the handover performance. The framework is applicable and expandable to the design of a new control message exchange procedure for MS handover.
Abstract:
An interleaved frame structure provides the ability for access links and relay links to share a single channel and enable the transmission of packet information across a 2-hop path within one frame. The interleaved frame structure in combination with fast processing at the Relay Station (RS) allows scheduled packet information to travel from a Mobile Subscriber (MS) to its MR enabled base station (MR-BS) within one frame.
Abstract:
A wireless device to configure a frame structure with multiple phases to support any hop network and any number of Relay Stations (RSs) deployed without increasing overhead proportionally with the number of RSs deployed in the system.
Abstract:
The techniques introduced here provide for network assisted device-to-device communication for peer-to-peer applications. The techniques include registering a user's peer-to-peer application identifier with a peer-to-peer application server, registering a peer-to-peer application with a device-to-device server, sending a peer-to-peer service request to the peer-to-peer application server, and receiving network assistance in discovering a peer with the desired P2P content/service and establishing a device-to-device communication arrangement for exchange of peer-to-peer services.
Abstract:
Session continuity may be maintained when communication devices transition from communicating through network infrastructure (e.g., through a cellular network) to direct mode communications (e.g., a communication path directly between two communication devices). For example, in switching from an infrastructure mode communication path to a direct mode communication path, a method may include: determining a public-facing address corresponding to the infrastructure path; replacing, for a packet that is to be transmitted over the direct mode communication path to a second communication device, a source address field of the packet with the determined public-facing address; and encapsulating the packet with source and destination address fields corresponding to the first and second communication device through the direct mode communication path respectively.
Abstract:
Certain embodiments herein are directed to managing wireless spectrum, which may include recommending or transmitting spectrum usage changes to one or more wireless devices. A spectrum management system comprising one or more computers may receive spectrum usage information associated with one or more wireless devices. The spectrum management system may generate a spectrum usage map based on the received information. Based on the spectrum usage map, a spectrum usage change is determined and transmitted to one or more wireless devices. The wireless devices may change their operation in accordance with the spectrum usage change.
Abstract:
Generally, this disclosure provides systems, devices, methods and computer readable media for context based spectrum management. A device may include a user preference determination module to determine a level-of-service preference of a user of the device, the preference associated with an application. The device may also include a user state determination module, to determine a state of the user, and a device capability determination module, to determine capabilities of the device. The device may further include an application programming interface (API) to provide the context to a cloud-based server configured to manage spectrum. The context includes the preference, the state and the capabilities. The API is further configured to receive content delivery options from the cloud-based server.