Abstract:
A memory array includes a coupled controller for controlling the writing to, reading from and erasure of memory cells and blocks of memory cells within the memory array. The controller is operable during an erase process to determine and reduce odd/even wordline offset. The controller operates on separately settable odd/even wordline erase voltages, which are adjusted to affect offset.
Abstract:
A method and apparatus for forming shallow and deep isolation trenches in a substrate so that the shallow and deep isolation trenches are aligned without mis-registration. The method includes forming a plurality of shallow trenches, covering a portion of the plurality of shallow trenches, then etching the uncovered shallow trenches to create deeper trenches.
Abstract:
A method and apparatus for forming shallow and deep isolation trenches in a substrate so that the shallow and deep isolation trenches are aligned without mis-registration. The method includes forming a plurality of shallow trenches, covering a portion of the plurality of shallow trenches, then etching the uncovered shallow trenches to create deeper trenches.
Abstract:
A method of fabricating a flash memory integrated circuit is described. In an embodiment of the present invention a dielectric filled trench isolation region is formed in a silicon substrate. The dielectric filled trench isolation region isolates a first portion of the silicon substrate from a second portion of the silicon substrate. A portion of the dielectric in the trench is then removed to reveal a portion of the silicon substrate in the trench between the first and second portions of the silicon substrate. Ions are then implanted to form a first source region in the first portion of the silicon substrate and to form a second source region in the second portion of the silicon substrate and to form a doped region in the revealed silicon substrate in the trench wherein the doped region in the trench extends from the first doped source region to the second doped source region.
Abstract:
An arrangement for preventing damage to a circuit of an integrated circuit due to the occurrence of voltage transients introduced externally to the integrated circuit. Generally, the arrangement provides protection against voltage transients for certain circumstances and disables such protection for other circumstances. Transient protection is enabled when the power of the transient would cause breakdown of the transistors of the integrated circuit. Otherwise, transient protection is disabled.
Abstract:
Devices, systems and methods of biasing in memory devices facilitate memory device programming and/or erase operations. In at least one embodiment, a first string of memory cells comprising a selected memory cell and a second string of memory cells are coupled to a common data line and a common source where the data line and the source are biased to substantially the same potential during a programming and/or erase operation performed on one or more of the strings of memory cells.
Abstract:
Memory devices, methods for programming sense flags, methods for sensing flags, and memory systems are disclosed. In one such memory device, the odd bit lines of a flag memory cell array are connected with a short circuit to a dynamic data cache. The even bit lines of the flag memory cell array are disconnected from the dynamic data cache. When an even page of a main memory cell array is read, the odd flag memory cells, comprising flag data, are read at the same time so that it can be determined whether the odd page of the main memory cell array has been programmed. If the flag data indicates that the odd page has not been programmed, threshold voltage windows can be adjusted to determine the states of the sensed even memory cell page.
Abstract:
Formation techniques are utilized to increase the space or distance between floating gates of a memory array of floating gate transistors. In at least some embodiments, floating gates are first formed over the substrate and then portions of the floating gates are removed to increase the spacing between the floating gates. An interlayer dielectric layer is then formed over the substrate and a control gate layer is formed thereover.
Abstract:
Formation techniques are utilized to increase the space or distance between floating gates of a memory array of floating gate transistors. In at least some embodiments, floating gates are first formed over the substrate and then portions of the floating gates are removed to increase the spacing between the floating gates. An interlayer dielectric layer is then formed over the substrate and a control gate layer is formed thereover.
Abstract:
A method of forming a microelectronic non-volatile memory cell, a non-volatile memory cell made according to the method, and a system comprising the non-volatile memory cell. The method comprises: providing a substrate; providing a pair of spaced apart isolation regions in the substrate, providing the pair comprising providing a buffer layer on the substrate; removing the buffer layer; providing a tunnel dielectric on a surface of the substrate after removing the buffer layer; providing a pair of device spacers on side walls of each of the isolation regions extending above the surface of the substrate; providing a floating gate on the tunnel dielectric; providing a source region and a drain region on opposite sides of the floating gate; providing an interpoly dielectric on the floating gate; and providing a control gate on the interpoly dielectric to yield the memory cell.