Abstract:
The invention provides a soot collection quantity measuring device for a diesel particulate filter. The soot collection quantity measuring device for a diesel particulate filter includes: an anion charging unit that is provided in an exhaust pipe in front of a diesel particulate filter and has a plurality of conductor flat plates in parallel with one another, and a capacitor that is provided at the back of the anion charging unit and has upper and lower electrode plates connected to a direct-current high-voltage power supply. The soot particulates pass through the anion charging unit which is negatively charged, and the charged soot particulates are collected in the upper electrode plate by an electric field between the upper and lower electrode plate.
Abstract:
Provided is a MLCC module used as a direct current (DC) link capacitor that is included in an inverter of a hybrid vehicle. The MLCC module includes: a plurality of first ceramic sheets 10, each including a plurality of first internal electrode portions 20; a plurality of second ceramic sheets 30, each being disposed between the plurality of first ceramic sheets 10 respectively to include a plurality of second internal electrode portions 40; a plurality of external electrode portions 50 being connected to the plurality of first internal electrode portions 20, respectively; a plurality of clamp lead electrode portions 60 being connected to the plurality of external electrode portions 50 to input and output electrical signals, respectively; and an epoxy molding compound (EMC) molding member sealing the plurality of first ceramic sheets 10, the plurality of second ceramic sheets 30, and the plurality of external electrode portions 50 to expose one ends of the plurality of clamp lead electrode portions 50, respectively.
Abstract:
A manufacturing method of a printed circuit board having an electro component is disclosed. The method in accordance with an embodiment of the present invention includes: seating an electro component, in which an electrode is formed on an upper side, on an upper side of a bonding sheet; seating an insulator, in which a cavity corresponding to the electro component has been formed, on the upper side of the bonding sheet; laminating a first insulating resin on an upper side of the insulator such that an upper side of the electro component is covered; polishing the first insulating resin such that the electrode is exposed; and forming a first circuit pattern, which is electrically connected to the exposed electrode, on the polished first insulating resin.
Abstract:
There is provided an apparatus for generating a transmission of local oscillation signals and a reception of local oscillation signals in a mobile terminal. The apparatus includes: a first phase locked loop (PLL) block configured to generate a transmission local oscillation signal; a second PLL block configured to generate a reception local oscillation signal; and a controller configured to control the first PLL block to operate before a minimum time period required for the first PLL block to lock up from a start point of a transmission burst period and the second PLL block to operate before a minimum time period required for the second PLL block to lock up from a start point of a reception burst period.
Abstract:
A computer system including a display to display an image; an audio outputter to output a sound; a system main body to output audio and/or video signals to the audio outputter and the display, respectively; an optical disk drive to reproduce audio and/or video signals recorded in an optical disk; a drive reproducer to convert audio and/or video signals reproduced by the optical disk drive into audio and/or video signals that are processed by the audio outputter and the display, respectively, and to output the converted audio and/or video signals to the audio outputter and the display, respectively The computer system further includes an audio/video signal switch to allow the audio and/or video signals reproduced by the optical disk drive to be selectively transmitted to one of the system main body and the drive reproducer; a power supply to supply electric power to the system main body and the drive reproducer; and a power switching part to allow electric power to be selectively supplied to one of the system main body and the drive reproducer. Thus, the present invention provides a computer system via which an optical disk such as the DVD is played by an optical disk drive such the DVD drive without booting the system.
Abstract:
Dual band retractable antenna system with capacitive coupling includes a helical antenna for operating at stand-by mode, the helical having ¼ wavelength; a whip, which penetrates the helical, for operating at busy mode, the whip having ¼ wavelength; a stopper for catching the whip when the antenna is extended out; a sleeve mounted to one end of the helical, for operating as a feed point when the whip is extended out; a capacitive coupling arrangement placed between the helical and the sleeve, for capacitively coupling the helical to the sleeve; and a matching circuit connected between the sleeve and the antenna system, so that the antenna system operates for both frequency bands.
Abstract:
A functionally graded shape memory polymer (SMP) that has a range of transition temperatures that are spatially distributed in a gradient fashion within one single article. The SMP is formed by post-curing a pre-cured glassy SMP in a linear temperature gradient that imposes different vitrification temperature limits at different positions along the gradient. Utilizing indentation-based surface shape memory coupled with optical measurements of photoelastic response, the capability of this material to respond over a wide range of thermal triggers is correlated with the graded glass transition behavior. This new class of SMP offers great potential for such applications as passive temperature sensing and precise control of shape evolution during a thermally triggered shape recovery.
Abstract:
Provided is a package type multi-layer thin film capacitor for large capacitance, including: a ceramic sintered body formed with slots on one side and another side thereof, respectively; a plurality of first internal electrode layers formed within the ceramic sintered body; a plurality of second internal electrode layers formed within the ceramic sintered body to be positioned between the plurality of first internal electrode layers; a pair of first main connection electrode members inserted into the slots to be connected to the first internal electrode layers or the second internal electrode layers, respectively; a pair of first main lead members inserted into the slots and to be connected to the first main connection electrode members, respectively; and a sealing member sealing the ceramic sintered body to partially expose each of the pair of first main lead members.
Abstract:
Provided are a high voltage multi-layer ceramic capacitor (MLCC) that may enable a surface mounting, and may form a guide electrode between inner electrodes or between sealing electrodes to thereby prevent a decrease in an inner voltage, caused by a parasitic capacitance, and a director current (DC)-link capacitor module using the MLCC. The high voltage MLCC may include: a ceramic laminated body 110; a plurality of side electrode members 120 being formed on both sides of the ceramic laminated body 110, respectively; a plurality of connection electrode members 130 being formed on the ceramic laminated body 110 to be connected to the side electrode member 120; and a plurality of external electrodes 140 being formed on each of the connection electrode members 130, wherein the ceramic laminated body 110 comprises a plurality of first ceramic sheets 111 where a plurality of first inner electrodes 112 is connected to the plurality of side electrode members 120, respectively, and a plurality of second ceramic sheets 113 being disposed between the plurality of first ceramic sheets 111, and where a plurality of second inner electrodes 114 is formed in a location corresponding to the first inner electrode 111.
Abstract:
Provided are a high voltage multi-layer ceramic capacitor (MLCC) that may enable a surface mounting, and may form a guide electrode between inner electrodes or between sealing electrodes to thereby prevent a decrease in an inner voltage, caused by a parasitic capacitance, and a director current (DC)-link capacitor module using the MLCC. The high voltage MLCC may include: a ceramic laminated body 110; a plurality of side electrode members 120 being formed on both sides of the ceramic laminated body 110, respectively; a plurality of connection electrode members 130 being formed on the ceramic laminated body 110 to be connected to the side electrode member 120; and a plurality of external electrodes 140 being formed on each of the connection electrode members 130, wherein the ceramic laminated body 110 comprises a plurality of first ceramic sheets 111 where a plurality of first inner electrodes 112 is connected to the plurality of side electrode members 120, respectively, and a plurality of second ceramic sheets 113 being disposed between the plurality of first ceramic sheets 111, and where a plurality of second inner electrodes 114 is formed in a location corresponding to the first inner electrode 111.