Abstract:
A control device installed in an electric water heater to control its operation, the control device including a water temperature control circuit and a power control circuit, the water temperature control circuit being formed of a water temperature detection circuit, which detects water temperature at the water inlet and the water outlet of the electric water heater, a water flow rate detection circuit, which detects the flow rate of water passing through the water inlet, a CPU, an indicator circuit controlled by the CPU to indicate the working conditions of the electric water heater, and a digital display controlled by the CPU to show the value of water temperature at the water outlet, the power control circuit being formed of a power supply circuit, a TRAIC triggering control circuit, which turns on the heating elements of the electric water heater alternatively subject AC phase change, a TRAIC power circuit, which provides the TRAIC triggering control circuit with the base power, an AC phase detection input circuit, a relay circuit controlled by the CPU to cut off power supply from the electric water heater when an abnormal condition occurs, a failure detection circuit, which outputs a signal to the CPU when an abnormal condition of the electric water heater is detected, causing the CPU to cut off power supply from the electric water heater, and an overheat protection circuit for overheat protection.
Abstract:
A memory cell array of dielectric charge trapping memory cells and method for performing program, read and erase operations on the memory cell array that includes bits stored at charge trapping sites in adjacent memory cells. A bit of information is stored at a first charge trapping site in a first memory cell and a second charge trapping site in a second adjacent memory cell. Storing charge at two trapping sites in adjacent memory cells increases data retention rates of the array of memory cells as each charge trapping site can be read to represent the data that is stored at the data site. Each corresponding charge trapping site can be read independently and in parallel so that the results can be compared to determine the data value that is stored at the data site in an array of dielectric charge trapping memory cells.
Abstract:
A switching device and an operating method for the same and a memory array are provided. The switching device comprises a first solid electrolyte, a second solid electrolyte and a switching layer. The switching layer is adjoined between the first solid electrolyte and the second solid electrolyte.
Abstract:
A disclosed memory device includes a three-dimension array structure that includes memory layers and transistor structures disposed between the memory layers. Each memory layer is connected to a common electrode, and each transistor structure includes transistors that share common column structures and common base structures. The transistors also each include a connector structure that is spaced apart from a common column structure by a common base structure.
Abstract:
An operating method for a memory device and a memory array and an operating method for the same are provided. The operating method for the memory device comprises following steps. A memory device is made being in a set state. A method for making the memory device being in the set state comprises applying a first bias voltage to the memory device. The memory device in the set state is read. A method for reading the memory device in the set state comprises applying a second bias voltage to the memory device. A recovering bias voltage is applied to the memory device. The step for applying the recovering bias voltage is performed after the step for applying the first bias voltage or the step for applying the second bias voltage.
Abstract:
A memory device having a phase change material element with a modified stoichiometry in the active region does not exhibit drift in set state resistance. A method for manufacturing the memory device includes first manufacturing an integrated circuit including an array of phase change memory cells with bodies of phase change material having a bulk stoichiometry; and then applying forming current to the phase change memory cells in the array to change the bulk stoichiometry in active regions of the bodies of phase change material to the modified stoichiometry, without disturbing the bulk stoichiometry outside the active regions. The bulk stoichiometry is characterized by stability under the thermodynamic conditions outside the active region, while the modified stoichiometry is characterized by stability under the thermodynamic conditions inside the active region.
Abstract:
A memory chip and methods of fabricating a memory device with different programming performance and retention characteristics on a single wafer. One method includes depositing a first bounded area of phase change material on the wafer and depositing a second bounded area of phase change material on the wafer. The method includes modifying the chemical composition of a switching volume of the first bounded area of phase change material. The method includes forming a first memory cell in the first bounded area of phase change material with a modified switching volume of phase change material and a second memory cell in the second bounded area of phase change material with an unmodified switching volume of phase change material such that the first memory cell has a first retention property and the second memory cell has a second retention property. The first retention property is different from the second retention property.
Abstract:
A memory cell array of dielectric charge trapping memory cells and method for performing program, read and erase operations on the memory cell array that includes bits stored at charge trapping sites in adjacent memory cells. A bit of information is stored at a first charge trapping site in a first memory cell and a second charge trapping site in a second adjacent memory cell. Storing charge at two trapping sites in adjacent memory cells increases data retention rates of the array of memory cells as each charge trapping site can be read to represent the data that is stored at the data site. Each corresponding charge trapping site can be read independently and in parallel so that the results can be compared to determine the data value that is stored at the data site in an array of dielectric charge trapping memory cells.
Abstract:
An integrated circuit phase change memory can be pre-coded by inducing a first resistance state in some cells and the memory, and a second resistance state and some other cells in the memory to represent a data set. The integrated circuit phase change memory is mounted on a substrate after coding the data set. After mounting the integrated circuit phase change memory, the data set is read by sensing the first and second resistance states, and changing cells in the first resistance state to a third resistance state and changing cells in the second resistance state to a fourth resistance state. The first and second resistance states maintain a sensing margin after solder bonding or other thermal cycling process. The third and fourth resistance states are characterized by the ability to cause a transition using higher speed and lower power, suitable for a mission function of a circuit.
Abstract:
A disclosed memory device includes a three-dimension array structure that includes memory layers and transistor structures disposed between the memory layers. Each memory layer is connected to a common electrode, and each transistor structure includes transistors that share common column structures and common base structures. The transistors also each include a connector structure that is spaced apart from a common column structure by a common base structure.