Abstract:
There is provided a projection exposure apparatus for microlithography using a wavelength less than or equal to 193 nm. The apparatus includes an optical element with a pupil raster element, and a projection objective with a real entrance pupil. The optical element is situated in or near a plane defined by the real entrance pupil.
Abstract:
An EUV optical projection system includes at least six mirrors (M1, M2, M3, M4, M5, M6) for imaging an object (OB) to an image (IM). At least one mirror pair is preferably configured as an at least phase compensating mirror pair. The system is preferably configured to form an intermediate image (IMI) along an optical path from the object (OB) to the image (IM) between a second mirror (M2) and a third mirror (M3), such that a first mirror (M1) and the second mirror (M2) form a first optical group (G1) and the third mirror (M3), a fourth mirror (M4), a fifth mirror (M5) and a sixth mirror (M6) form a second optical group (G1). The system also preferably includes an aperture stop (APE) located along the optical path from the object (OB) to the image (IM) between the first mirror (M1) and the second mirror (M2). The second mirror (M2) is preferably convex, and the third mirror (M3) is preferably concave. The system preferably forms an image (IM) with a numerical aperture greater than 0.18.
Abstract:
There is provided a substrate material for an optical component for X-rays of wavelength λR. The substrate includes (a) a glass phase made of amorphous material having a positive coefficient of thermal expansion, and (b) a crystal phase including microcrystallites having a negative coefficient of thermal expansion and a mean size of less than about 4 λR. The substrate material has a stoichiometric ratio of the crystal phase to the glass phase such that a coefficient of thermal expansion of the substrate material is less than about 5×10−6 K−1 in a temperature range of about 20 °C. to 100°C. The substrate material, following a surface treatment, has a high spatial frequency roughness (HSFR) of less than about λR/30 rms.
Abstract translation:提供了用于波长λλX的X射线的光学部件的基板材料。 该基板包括(a)由具有正的热膨胀系数的非晶材料制成的玻璃相,和(b)包含具有负的热膨胀系数和平均尺寸小于约4λλ的微晶的结晶相, R SUB>。 衬底材料具有晶相与玻璃相的化学计量比,使得衬底材料的热膨胀系数小于约5×10 -6 K -1 在约20℃的温度范围内。 至100℃。 在表面处理之后,衬底材料具有小于约λ/ 30 / 30rms的高空间频率粗糙度(HSFR)。
Abstract:
An EUV optical projection system includes at least six reflecting surfaces for imaging an object (OB) on an image (IM). The system is preferably configured to form an intermediate image (IMI) along an optical path from the object (OB) to the image (IM) between a secondary mirror (M2) and a tertiary mirror (M3), such that a primary mirror (M1) and the secondary mirror (M2) form a first optical group (G1) and the tertiary mirror (M3), a fourth mirror (M4), a fifth mirror (M5) and a sixth mirror (M6) form a second optical group (G2). The system also preferably includes an aperture stop (APE) located along the optical path from the object (OB) to the image (IM) between the primary mirror (M1) and the secondary mirror (M2). The secondary mirror (M2) is preferably concave, and the tertiary mirror (M3) is preferably convex. Each of the six reflecting surfaces preferably receives a chief ray (CR) from a central field point at an incidence angle of less than substantially 15°. The system preferably has a numerical aperture greater than 0.18 at the image (IM). The system is preferably configured such that a chief ray (CR) converges toward the optical axis (OA) while propagating between the secondary mirror (M2) and the tertiary mirror (M3).
Abstract:
There is provided an illumination system for scannertype microlithography along a scanning direction with a light source emitting a wavelength ≦193 nm. The illumination system includes a plurality of raster elements. The plurality of raster elements is imaged into an image plane of the illumination system to produce a plurality of images being partially superimposed on a field in the image plane. The field defines a non-rectangular intensity profile in the scanning direction.
Abstract:
There is provided a projection objective for a projection exposure apparatus that has a primary light source for emitting electromagnetic radiation having a chief ray with a wavelength≦193 nm. The projection objective includes an object plane, a first mirror, a second mirror, a third mirror, a fourth mirror; and an image plane. The object plane, the first mirror, the second mirror, the third mirror, the fourth mirror and the image plane are arranged in a centered arrangement around a common optical axis. The first mirror, the second mirror, the third mirror, and the fourth mirror are situated between the object plane and the image plane. The chief ray, when incident on an object situated in the object plane, in a direction from the primary light source, is inclined away from the common optical axis.
Abstract:
There is provided a microlithography projection objective for short wavelengths, with an entrance pupil and an exit pupil for imaging an object field in an image field, which represents a segment of a ring field, in which the segment has an axis of symmetry and an extension perpendicular to the axis of symmetry and the extension is at least 20 mm. The objective comprises a first (S1), a second (S2), a third (S3), a fourth (S4), a fifth (S5) and a sixth mirror (S6) in centered arrangement relative to an optical axis. Each of these mirrors have an off-axis segment, in which the light beams traveling through the projection objective impinge. The diameter of the off-axis segment of the first, second, third, fourth, fifth and sixth mirrors as a function of the numerical aperture NA of the objective at the exit pupil is ≦1200 mm * NA.
Abstract:
A reduction objective, a projection exposure apparatus with a reduction objective, and a method of use thereof are disclosed. The reduction objective comprises four (primary, secondary, tertiary, and quaternary) mirrors in centered arrangement with respect to an optical axis. The primary mirror is a convex mirror and the second mirror has a positive angular magnification. The reduction objective has an obscuration-free light path and is suitable for annular field scanning operation, such as is used in soft X-ray, i.e. and EUV and UV, lithography.
Abstract:
A facet mirror is to be used as a bundle-guiding optical component in a projection exposure apparatus for microlithography. The facet mirror has a plurality of separate mirrors. For individual deflection of incident illumination light, the separate mirrors are in each case connected to an actuator in such a way that they are separately tiltable about at least one tilt axis. A control device, which is connected to the actuators, is configured in such a way that a given grouping of the separate mirrors can be grouped into separate mirror groups that include in each case at least two separate mirrors. The result is a facet mirror which, when installed in the projection exposure apparatus, increases the variability for setting various illumination geometries of an object field to be illuminated by the projection exposure apparatus. Various embodiments of separate mirrors for forming the facet mirrors are described.
Abstract:
An EUV collector for collecting and transmitting radiation from an EUV radiation source includes at least one collector mirror for reflecting an emission of the EUV radiation source, which is rotationally symmetric with respect to a central axis. The EUV collector also includes a cooling device for cooling the at least one collector mirror. The cooling device has at least one cooling element, which has a course with respect to the collector mirror, in each case, such that the projection of the course into a plane perpendicular to the central axis has a main direction, which encloses an angle of at most 20° with respect to a predetermined preferred direction. The collector transmits improved quality radiation to illuminate an object field.