Abstract:
An integrated circuit in which measurement of the alignment between subsequent layers has less susceptibility to stress induced shift. A first layer of the structure has a first overlay mark. A second and/or a third layer are formed in the alignment structure and on the first layer. Portions of the second and/or third layer are selectively removed from regions in and around the first overlay mark. A second overlay mark is formed and aligned to the first overlay mark. The alignment between the second overlay mark and first overlay mark may be measured with an attenuated error due to reflection and refraction or due to an edge profile shift of the first overlay mark.
Abstract:
The present invention provides a mask comprising a substrate, a plurality of strip patterns and at least an assist pattern. The strip patterns are disposed on the substrate and arranged in parallel to one another. The assist pattern is in a strip shape and disposed on the substrate. The assist pattern is arranged in parallel to and outside of the outermost strip pattern of the strip patterns. The assist pattern and the strip pattern have the same phase, while the assist pattern has a width larger than that of the strip patterns. When the mask is applied for exposure process, the pattern of the assist pattern will not be transferred to the underlying layer to be exposed.
Abstract:
An embodiment of the invention provides a chip package, which includes: a semiconductor substrate having a device region and a non-device region neighboring the device region; a package layer disposed on the semiconductor substrate; a spacing layer disposed between the semiconductor substrate and the package layer and surrounding the device region and the non-device region; a ring structure disposed between the semiconductor substrate and the package layer, and between the spacing layer and the device region, and surrounding a portion of the non-device region; and an auxiliary pattern including a hollow pattern formed in the spacing layer or the ring structure, a material pattern located between the spacing layer and the device region, or combinations thereof.
Abstract:
According to an embodiment of the invention, a chip package is provided. The chip package includes a substrate having an upper surface and a lower surface, a plurality of conducting pads located in the substrate or under the lower surface thereof, a dielectric layer located between the conducting pads, a hole extending from the upper surface towards the lower surface of the substrate and exposing a portion of the conducting pads, and a conducting layer located in the hole and electrically contacting the conducting pads.
Abstract:
The present invention provides a mask comprising a substrate, a plurality of strip patterns and at least an assist pattern. The strip patterns are disposed on the substrate and arranged in parallel to one another. The assist pattern is in a strip shape and disposed on the substrate. The assist pattern is arranged in parallel to and outside of the outermost strip pattern of the strip patterns. The assist pattern and the strip pattern have the same phase, while the assist pattern has a width larger than that of the strip patterns. When the mask is applied for exposure process, the pattern of the assist pattern will not be transferred to the underlying layer to be exposed.
Abstract:
A rework process of patterned photo-resist layer is provided. First, a substrate is provided with a first DARC, a first primer and a first patterned photo-resist layer being sequentially formed thereon. Next, remove the first patterned photo-resist layer and the first primer from the first DARC. After that, form a second DARC on the first DARC; form a second primer on the second DARC. Last, form a second patterned photo-resist layer on the second primer.
Abstract:
A sandwich ARC structure for preventing metal to contact from shifting, the sandwich ARC structure comprising a first Ti layer formed on a metal laer and a first TiN layer formed on the first Ti layer. A second Ti layer is formed on the first TiN layer and a second TiN layer is formed on the second Ti layer. Wherein the sandwich ARC structure formed of first Ti/first TiN/second Ti/second TiN will reduces the tress between said metal layer and a dielectric layer formed below the metal layer.
Abstract:
An integrated circuit capable of operating despite a profile shift is disclosed. Overlay marks on the integrated circuit are surrounded by a trench that tends to relieve the effect of a profile shift caused by stress applied to the integrated circuit. The position of the overlay marks tends, therefore, not to be affected by the stress.
Abstract:
A rework process of patterned photo-resist layer is provided. First, a substrate is provided with a first DARC, a first primer and a first patterned photo-resist layer being sequentially formed thereon. Next, remove the first patterned photo-resist layer and the first primer from the first DARC. After that, form a second DARC on the first DARC; form a second primer on the second DARC. Last, form a second patterned photo-resist layer on the second primer.