Abstract:
Polymerizable resin compositions and microstructures comprising the reaction product of such polymerizable resin compositions are described. The microstructures comprise the reaction product of a polymerizable resin composition comprising an organic portion having a refractive index of at least 1.56 wherein the polymerizable resin composition comprises a fluorene-containing monomer.
Abstract:
Presently described are optical films comprising a polymerized (e.g. microstructured) surface that comprises the reaction product of a polymerizable resin composition and polymerizable resin compositions that comprise nanoparticles; at least one first monomer comprising at least two (meth)acrylate groups; and at least one second (meth)acrylate monomer having the structure
wherein at least one R1 comprises an aromatic substituent, t is an integer from 1 to 4, and R2 is hydrogen or methyl.
Abstract:
Described herein is a dicarboxylic acid compound of formula (I): Wherein: R3 comprises an aryl group, R2 is an alkylene group comprising to 6 carbon atoms, n is 0 or 1, R1 is H or CH3, and X is S or NZ, wherein Z is H, an alkyl group comprising to 4 carbon atoms or a phenyl group. Such compounds can be used to modify the surface of inorganic particles. These modified inorganic particles may then be advantageously used in polymerizable resins to increase the refractive index of the resulting composite, while enabling good flow properties of the polymerizable composition
Abstract:
A composition is described comprising a styrene-isobutylene block copolymer; and at least one ethylenically unsaturated monomer. After curing the composition comprises polymerized units of the ethylenically unsaturated monomer. In some embodiments the ethylenically unsaturated groups are selected from (meth)acryl or vinyl ether. The composition is suitable for use as a (e.g. pressure sensitive) adhesive. Articles, methods of making an article, and methods of bonding are also described.
Abstract:
Curable, coatable compositions include silane surface-treated inorganic nanoparticles with a high refractive index, and a curable reaction mixture. The curable reaction mixture includes a first (meth)acrylate monomer comprising a high refractive index (meth)acrylate monomer with a refractive index of 1.6 or higher, a second (meth)acrylate monomer comprising a lower refractive index (meth)acrylate monomer with a refractive index of less than 1.6, and at least one initiator. Cured optical coatings prepared from the compositions are optically clear, having a visible light transmission of at least 88% and a haze of 5% or less, and have a refractive index of at least 1.78, and are capable of passing a 10 millimeter mandrel flexibility test.
Abstract:
Presently described are optical films, such as a brightness enhancing film, having a polymerized microstructured surface disposed on a preformed polymeric film wherein the film has a thickness of no greater than 3 mils and the polymerized microstructured surface consists of the reaction product of a substantially non-brominated polymerizable resin composition.
Abstract:
Optical films are described having a polymerized microstructured surface that is the reaction product of a polymerizable resin composition comprising at least one polymerizable ethylenically unsaturated triphenyl monomer. Also described are certain triphenyl (meth)acrylate monomers and polymerizable resin compositions.
Abstract:
A method of making optical films having a polymerized microstructured surface are described. The polymerized microstructured surface comprises the reaction product of a polymerizable resin composition comprising 10% to 100 wt-% of at least one biphenyl di(meth)acrylate monomer. The di(meth)acrylate monomer comprises a core biphenyl structure having two aromatic rings connected with a C—C bond. The biphenyl di(meth)acrylate monomer preferably comprises a sufficient amount of ortho and/or meta(meth)acrylate substituents such that the monomer is a liquid at 25° C.
Abstract:
Presently described are optical films, such as a brightness enhancing film, having a polymerized microstructured surface disposed on a preformed polymeric film wherein the film has a thickness of no greater than 3 mils and the polymerized microstructured surface consists of the reaction product of a substantially non-brominated polymerizable resin composition.
Abstract:
Optical films are described having a polymerized microstructured surface that comprises the reaction product of a polymerizable resin composition comprising at least one polymerizable ethylenically unsaturated triphenyl monomer. Also described are certain triphenyl(meth)acrylate monomers and polymerizable resin compositions.