PRINTABLE COMPOSITIONS INCLUDING HIGHLY VISCOUS COMPONENTS AND METHODS OF CREATING 3D ARTICLES THEREFROM

    公开(公告)号:US20190163060A1

    公开(公告)日:2019-05-30

    申请号:US16309533

    申请日:2017-06-27

    Abstract: The present disclosure provides a method for building a three-dimensional object using a printable composition including high viscosity polymerizable components. The method includes the steps of a) providing a printable composition comprising a high viscosity polymerizable component and a temporary solvent; b) selectively curing the printable composition to form an article representing the shape of the three-dimensional object; and c) removing a substantial amount of the temporary solvent from the article. The method is particularly well suited to making an orthodontic clear tray aligner. Also disclosed are a variety of printable compositions including high viscosity polymerizable components, such as polyurethane methacrylates, and temporary solvents.

    METHODS OF MAKING METAL BOND AND VITREOUS BOND ABRASIVE ARTICLES, AND ABRASIVE ARTICLE PRECURSORS

    公开(公告)号:US20190022826A1

    公开(公告)日:2019-01-24

    申请号:US16070316

    申请日:2017-01-18

    Abstract: The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. The methods include sequential steps. Step a) includes a subprocess including sequentially: i) depositing a layer of loose powder particles in a confined region; and ii) selectively applying heat via conduction or irradiation, to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The layer of loose powder particles has substantially uniform thickness. Step b) includes independently carrying out step a) a number of times to generate an abrasive article preform comprising the bonded powder particles and remaining loose powder particles. Step c) includes separating remaining loose powder particles from the abrasive article preform. Step d) includes heating the abrasive article preform to provide the vitreous bond abrasive article comprising the abrasive particles retained in a vitreous bond material, or to provide the metal bond abrasive article. A method of making a metal bond abrasive optionally includes infusing an abrasive article preform with a molten lower melting metal and solidifying the molten lower melting metal to provide the metal bond abrasive article. The present disclosure further provides a vitreous bond abrasive article precursor and a metal bond abrasive article precursor.

Patent Agency Ranking